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Abstract—Deep Reinforcement Learning (DRL) is being inves-
tigated as a competitive alternative to traditional techniques for
solving network optimization problems. A promising research
direction lies in enhancing traditional optimization algorithms
by offloading low-level decisions to a DRL agent. In this study,
we consider how to effectively employ DRL to improve the
performance of Local Search algorithms, i.e., algorithms that,
starting from a candidate solution, explore the solution space
by iteratively applying local changes (i.e., moves), yielding the
best solution found in the process. We propose a Local Search
algorithm based on lightweight Deep Reinforcement Learning
(DeepLS) that, given a neighborhood, queries a DRL agent for
choosing a move, with the goal of achieving the best objective
value in the long term. Our DRL agent, based on permutation-
equivariant neural networks, is composed by less than a hundred
parameters, requiring only up to ten minutes of training and
can evaluate problem instances of arbitrary size, generalizing
to networks and traffic distributions unseen during training.
We evaluate DeepLS on two illustrative NP-Hard network
routing problems, namely OSPF Weight Setting and Routing
and Wavelength Assignment, training on a single small network
only and evaluating on instances 2x-10x larger than training.
Experimental results show that DeepLS outperforms existing
DRL-based approaches from literature and attains competitive
results with state-of-the-art metaheuristics, with computing times
up to 8x smaller than the strongest algorithmic baselines.

Index Terms—Deep Reinforcement Learning, Local Search, IP
Networks, Optical Networks, NP-Hard Optimization

I. INTRODUCTION

Machine Learning (ML) has become a widely adopted
decision-support tool in communications networks. Remark-
able results have been achieved in many applications, such
as in traffic prediction [1], failure detection [2], traffic engi-
neering [3], link load control [4], and routing and spectrum
assignment problems in optical networks [5], [6].

As the size and the complexity of network optimization
problems are bound to grow over time, new solving methods
that are both computationally scalable and that can produce
good-quality solutions are currently sought for several net-
working domains, such as in IP and in optical networks.
Among the different ML paradigms, Reinforcement Learning
(RL) is currently attracting significant attention. What makes
RL particularly attractive is its capability, unlike Supervised
Learning (SL), to learn without labelled data. The high-level
objective of RL applied to NP-Hard optimization problems is
to learn specialized heuristic algorithms tailored for specific
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problem classes (e.g., learning a constructive heuristic for
static Routing and Wavelength Assignment (RWA) in optical
networks [6]). Following this line of reasoning, RL-based
heuristics have been applied with success to several classical
problems in the Operations Research (OR) literature, such as
the Knapsack Problem, the Bin-Packing Problem, the Travel-
ling Salesman Problem, and the Capacitated Facility Location
Problem [7]–[10].

Generally speaking, Bengio et al. [11] have laid out three
high-level paradigms for ML applied to combinatorial opti-
mization: i) end-to-end learning, ii) parameter configuration,
and iii) ML alongside OR. In end-to-end learning, a ML black-
box model outputs a feasible solution for a given problem
instance. In parameter configuration, a ML model predicts
the optimal setup parameters of a given OR algorithm, for
instance a solver or a metaheuristic, for a given problem
instance. Finally, in ML alongside OR, one or more ML-based
algorithms replace lower-level functions that were originally
implemented by an OR algorithm (e.g., choosing the best
variable to branch in each Branch-and-Bound iteration [10]).

Among the aforementioned paradigms, ML alongside OR
(ML+OR) stands out, as it preserves the logical structure of
well-established optimization strategies, while leveraging ML
to address their shortcomings. For example, many low-level
components in well-known heuristics are often arbitrarily de-
fined, such as the criteria for choosing a move in Local Search
or the mutation/crossover functions in a Genetic Algorithm.
As an illustrative recent research achievement, the winner of
a recent competition on solving the Vehicle Routing Problem
with Time Windows [12] employed ML+OR methodologies.
Therefore, we argue that investigating ML+OR methodologies
for solving classical optimization problems in networking is
a research topic of great interest. Our research questions
are therefore as follows: can we enhance already existing
network optimization algorithms by offloading selected tasks
to (possibly lightweight) learning intelligence? What are the
gains compared with handcrafted state-of-the-art algorithms?

To demonstrate the potential of ML+OR for network op-
timization, we propose DeepLS, a simple Local Search (LS)
algorithm augmented with Deep Reinforcement Learning. We
apply DeepLS for solving two illustrative NP-Hard routing
problems in communication networks, namely, the OSPF
Weight Setting problem (OWS) and the Routing and Wave-
length Assignment problem (RWA). We chose OWS and RWA
since they are both well-studied problems in communications
literature for which strong algorithmic baselines are available,
and are often solved as subproblems in high-level network
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Fig. 1. Local Search (LS) vs. Deep Reinforcement Learning-augmented Local Search (DeepLS). Given an initial solution, traditional Local Search algorithms
iteratively explore the search space following deterministic policies. However, designing the best neighbourhood choice policy for a given problem family
is not straightforward. As such, the choice of a neighbour can be offloaded to a lightweight DRL agent, with the goal of learning a smart neighbourhood
selection policy tailored for the specific optimization problem that is being solved.

management frameworks.

DeepLS leverages a DRL agent for guiding the LS neighbor
selection procedure, with the goal of achieving better solutions
in the long-term. Specifically, in Fig. I we illustrate how DRL
can be used to augment a standard LS procedure: instead of
applying myopic decision criteria, a DRL agent is trained to
select the sequence of neighbours leading to the best final
solution. To this end, we employ a lightweight permutation-
equivariant artificial neural network architecture, composed of
less than a hundred parameters, that can perform inference
for problem instances of arbitrary size. As DRL agents often
require a large number of environment interactions for learning
an effective policy, we devise two fundamental countermea-
sures for shortening the required training times: i) we train
our DRL agent only on one small network topology, which
is significantly less complex to simulate, and ii) we train
our DRL agent only for a small number of LS iterations,
where it can at best converge to a local minima close to the
starting solution. This allows to dramatically reduce training
times down to few minutes, compared to the tens of hours
required for state-of-the-art DRL-based approaches proposed
in previous literature. In terms of solution quality, our approach
outperforms both state-of-the-art DRL-based approaches and
is competitive with handcrafted metaheuristics. To summarize,
our results show that a simple Local Search heuristic, if
augmented with lightweight DRL, can compete with far more
elaborated handcrafted algorithms requiring minimal training
effort and inference times overhead. These insights open up
exciting research directions in many applications of Machine
Learning for network optimization.

The remainder of this paper is organized as follows. In
Section II we outline related works on RL applied to opti-
mization problems in communications networks. In Section
III we provide essential background notions on Reinforcement
Learning and Deep Reinforcement Learning. In Section IV

we outline our proposed Local Search methodology, framing
it into a Markov Decision Process. We illustrate the design
of our lightweight neural architecture, and we outline its
application to the OSPF Weight Setting (OWS) problem and
the Routing and Wavelength Assignment (RWA) problem in
optical networks. In Section V we illustrate our experimental
results on the OWS and RWA problems. In Section VI we
outline our conclusions and future research directions.

II. RELATED WORK

In this Section we briefly survey recent works in the field
of RL applied to optimization in communications network.
Moreover, we outline recent progress on the application of
RL for enhancing Local Search algorithms.

A. Reinforcement Learning for Network Optimization

RL applied to optimization and control of communication
networks has received significant attention in the recent years.
Since RL is a universal methodology for data-driven sequential
decision making, many applications have been explored in the
networking literature. In the following, we overview recent
studies on RL applied to communication networks.

In [3], a DRL agent based on a Graph Neural Net-
work (GNN) is used for learning a heuristic for the Multi-
Commodity Flow (MCF) problem. The DRL agent learns
the OSPF weights optimizing the min-max link load in the
network. The proposed approach attains competitive results
to a state-of-the-art optimizer [13] in significantly shorter
computing times. The DRL agent can be applied to graphs of
any size, generalizing to topologies not seen during training.

In [14], a DRL agent is used to learn a heuristic for
the MCF problem. The DRL agents learn edge weights that
are then converted to per-flow splitting ratios via “SoftMin
routing”. The work in [15] extends [14] with the use of GNNs.
In particular, authors emphasize on the capability of GNNs
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to perform inference and generalize on graphs of arbitrary
size. Both frameworks require solving the associated Linear
Program of the MCF problem at every learning iteration, hence
optimal solutions may not be attainable for larger problem
instances or for NP-Hard optimization problems.

In [5], DRL is used to learn a heuristic algorithm for
dynamic Routing, Modulation and Spectrum Assignment
(RMSA) in optical networks. Given a connection request, the
DRL agent either selects one among the K pre-computed
paths and a feasible spectrum allocation or issues a proactive
rejection. The proposed approach outperforms baseline greedy
heuristics such as Shortest-Path First-Fit and K-Shortest-Paths
First-Fit, but no comparison is provided against more compet-
itive metaheuristics.

In [6], DRL is used to learn a heuristic algorithm for static
Routing and Wavelength Assignment (RWA). The DRL agents
operates similarly as in [5], but countermeasures are taken
for large problem instances for which the sparsity of the
reward hindered the final performance. The proposed approach
outperforms baseline greedy heuristics and is competitive with
a state-of-the-art Genetic Algorithm tailored for RWA, with
significant savings in computing times.

In [16], DRL is used to learn a slice admission control
policy in a 5G Radio Access Network (RAN). The objective is
to maximize the revenue of the operator considering low and
high priority slices, balancing penalties coming from rejecting
a slice or failing to scale an already admitted slice due to
resource unavailability. The proposed approach outperforms
both static and threshold-based heuristics.

B. Reinforcement Learning alongside Local Search

Recently, several works have investigated the use of RL
alongside Local Search for solving NP-Hard optimization
problems. Indeed, applying RL to further improve general-
purpose and well-performing heuristics is gathering attention
in the research community.

In [17], DRL is used alongside Simulated Annealing for
solving a maintenance planning problem. DRL is used to
learn a Local Search algorithm that iteratively refines the best
solution found by each iteration of SA. The proposed approach
outperforms baseline SA and other data-driven heuristics.

In [7], DRL is used alongside Simulated Annealing for
solving classical combinatorial optimization problem, such as
the Knapsack Problem, the Bin Packing Problem and the Trav-
elling Salesman Problem. DRL is used to learn the proposal
function that is internally called by SA at each iteration. The
proposed approach, albeit being a general-purpose solution
method, attains competitive results to specialized heuristics
for the considered problems.

In [18], a DRL-based Iterated Local Search was developed
for solving the additive manufacturing machine scheduling
problem. In particular, the Local Search procedure was im-
plemented as a Variable Neighbourhood Search algorithm, for
which the DRL agent selects the best neighbourhood to ex-
plore at each time-step. The proposed approach outperforms an
evolutionary algorithm on medium to large problem instances.

C. Contributions

In the context of ML for Network Optimization, previous
literature mostly focused on end-to-end learning [2], [5],
[6], [14]. Compared to these works, we focus on how to
augment an existing optimization method, e.g., a Local Search
algorithm, with lightweight DRL-based intelligence.

In the context of DRL applied to Local Search algorithms,
differently from [17] and [18], the DRL agent in our proposed
solution learns to choose the best move in a neighbourhood
rather than to choose a specific neighbourhood structure. As in
[7], we use a Deep Set-like architecture [19] for implementing
our neural network, but we did not opt for an augmented
SA. From preliminary results, we have found the probabilistic
rejections of SA to be detrimental for learning. We speculate
that with simple LS, the DRL agent can learn by itself
to balance between exploration and exploitation, and that
the probabilistic rejections of SA may inadvertently pollute
exploration. Moreover, since the Markov chains traversed by
SA are notoriously very long and networking environments
may be cumbersome to simulate, we concluded that Simulated
Annealing as a methodology is not compatible with our
requirements of short computational times.

In our work, we improve over the state-of-the-art by dealing
with several research challenges of practical importance for a
successful integration of ML in network optimization:

• Training times: DRL is notorious for being extremely
sample inefficient, often requiring hours-long training be-
fore converging to a reasonable policy. DeepLS exploits a
smart training procedure that allows to reach convergence
in few minutes of training.

• Generalization capabilities: generally speaking, algo-
rithms should work well for a broad and diversified
set of problem instances. DeepLS shows remarkable
generalization capabilities: while being trained on only
one small network topology, it shows remarkable gen-
eralization capabilities to larger network topologies and
traffic matrices unseen at training time.

• Computational times: Integrating Deep Neural Net-
works inside an optimization algorithm might introduce
a significant overhead in the overall computational time.
DeepLS leverages a lightweight neural network of less
than a hundred parameters, therefore introducing negligi-
ble additional complexity in the Local Search procedure.
Depending on the complexity of the optimization prob-
lem, computational times range from few seconds to few
tens of seconds, which are fully in-line with what it is
expected from state-of-the-art metaheuristics.

• Solution quality: DeepLS outputs solutions that out-
perform previous state-of-the-art DRL-based algorithms
and either match or outperform significantly more com-
plex handcrafted metaheuristics. In particular, the most
relevant related work to ours is [3], in which authors
propose an iterative DRL-based procedure for setting
OSPF weights that leverages Graph Neural Networks
(GNNs). Compared to [3], we achieve better performance
with significantly shorter training/inference times, and
without the need for a complex GNN model.
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III. BACKGROUND

In this section we provide essential theoretical background
on RL and DRL. Moreover, we outline the main definitions
and properties of permutation-equivariant neural networks.

A. Reinforcement Learning

RL is a subset of ML which targets sequential decision-
making problems. An agent interacts with a dynamic envi-
ronment by taking actions, with the goal of maximizing the
accumulation of rewards over a time horizon [20]. Formally,
an RL environment is often modelled as a Markov Deci-
sion Process (MDP). An MDP is represented by the tuple
⟨S,A, P,R, γ, µ⟩, where S is the set of states, A is the set
of actions, P : S × A × S → [0, 1] is the state transition
probability matrix, R : S × A → R is the reward function,
γ ∈ [0, 1] is the discount factor, and µ : S → [0, 1] is the set
of initial probabilities. We define the discounted return at time
step t as Gt =

∑∞
k=t+1 γ

k−t−1Rk.
The goal of an RL agent is to learn a policy π : S → A that

maximizes the expected discounted accumulation of rewards
over a (possibly infinite) time-horizon T , as follows:

argmax
π

J(π) = E

[
T∑

t=0

γtRt

∣∣∣∣∣ π

]
(1)

Given a policy π, we define its value function Vπ : S → R
as Vπ(s) = Eπ[Gt|st = s], and its action-state value function
Qπ : S ×A → R as Q(s, a) = Eπ[Gt|st = s, at = a].

In the following, we will consider episodic RL settings in
which the time horizon T is assumed to be finite. For example,
in RL applied to optimization, we can consider an episode
to be corresponding to a single problem instance. In such
episodic settings, the discount factor γ in Eq. (1) is often
dropped, leading to the optimization of the undiscounted sum
of rewards over an episode [21]. The shape of the reward
function is a critical design choice in RL, as it ultimately de-
fines the problem we are solving. Interestingly, whether or not
“reward is enough” to achieve every conceivable optimization
goal is currently an open research question [22].

In many applications of practical interest, the number of
states and actions in an MDP may either be combinatorial or
infinite. For instance, decision variables in an Integer Linear
Programming (ILP) optimization problem may take a combi-
natorial number of possible values. Because of this it may not
be possible, due to time and memory constraints, to represent
and solve the MDP via exact methods. As such, we need to
leverage a function approximation for solving complex MDPs
via RL. In particular, the seminal paper of Mnih et al. [23]
illustrated that it is possible to learn to play Atari games via
Reinforcement Learning by using deep convolutional neural
networks as function approximators, giving rise to the field of
DRL. Since then, significant results have been achieved in a
plethora of complex tasks using DRL, from continuous control
to playing modern real-time strategy games [24]–[26].

B. Permutation-equivariant neural networks

A generic algorithm for network optimization operates on
sets of decision variables. As such, to apply DRL to network

Algorithm 1 DRL-Augmented Local Search (DeepLS)

Require: Objective function O(·), starting solution s0 (e.g.,
via a greedy heuristic), neighbour selection policy π(a|s),
transition function Step(·)

1: sbest ← s0
2: Obest ← O(s0)
3: for t← 0 to Niter − 1 do
4: at ← π(a|s = st)
5: st+1 ← Step(st, at)
6: if O(st+1) < Obest then
7: sbest ← st+1

8: end if
9: end for

10: return sbest

optimization, we need to leverage neural network architectures
that can satisfy two fundamental properties. First, we want a
neural network able to perform inference from an arbitrary
number of inputs. This is because we want to apply a trained
model on problem instances different (and possibly larger)
than the ones seen during training. Second, we want the
outputs of the neural network to be equivariant with respect
to the ordering of its inputs. Indeed, even if we permute the
ordering (i.e., the indexing) of the decision variables in an
optimization problem, the problem that is being represented
remains the same. Formally, a multi-output neural network is
permutation-equivariant if the following holds:

fθ(perm(x)) = perm(fθ(x)) (2)

where fΘ(·) is the neural network parameterized by θ, x is
the vector of inputs and perm(·) is a permutation operator. In
practice, if we apply a permutation on the inputs, the same
permutation is reflected in the outputs. For example, in the
context of optimization problems, each input may correspond
to a decision variable, and outputs may correspond to scores
for each variable. As such, for the scores to be consistent, the
neural network needs to be permutation equivariant.

In [19] authors outline general principles for designing
permutation equivariant neural network layers. A permutation-
equivariant layer can be generally expressed as follows:

f(x) = σ(xΛ+ 11⊤xΓ) (3)

where Λ,Γ ∈ Rm×l are learnable parameters, x ∈ Rn×m

are the inputs, and σ(·) is an element-wise non-linearity. In
particular, the input matrix x represents n elements character-
ized by m features each. The transformations xΛ and xΓ are
permutation equivariant, since they are equivalent to applying
the linear transformation Λ and Γ, respectively, to each row of
x. Therefore, if a permutation is applied to the input elements
x, the same permutation is reflected on the elements of f(x).
Stacking multiple layers defined as Eq. (3) allows to build
permutation-equivariant deep neural networks.
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Fig. 2. DeepLS policy network architecture for a discrete action space. An action consists in choosing one among the n decision variables. Each decision
variable x0, . . . , xn is associated with a set of features (e.g., if we associate one decision variable to a link in a network topology, link features can be the
current link load, the current link weight, and so on). Features are processed in parallel by the same single-output neural network. Individual outputs are then
aggregated (e.g., via SoftMax) to produce the policy π(a|s).

IV. DEEPLS: DRL-AUGMENTED LOCAL SEARCH

Our proposed DRL-Augmented Local Search algorithm
(DeepLS) is outlined in Algorithm 1. At each execution step,
the neighbour selection policy implemented by a DRL agent
π(a|s), chooses a move by observing only the current solution.
The Step function updates the current solution according to
the move chosen by the policy. After Niter iterations, the best
solution found is returned. The transitions from a solution to
the next one depend only on the current solution, therefore
this Local Search procedure realizes a Markov chain over the
solution space. We extend this Markov chain to an episodic
MDP, which we aim to solve via model-free RL. In particular,
in the following we will refer to a full execution of Algorithm
1 for some problem instance as an episode.

In the remainder of this Section, we outline our lightweight
neural network architecture for implementing the DRL agent
π(a|s), and we illustrate its application to the OWS and RWA
problems.

A. Neural network architecture
An ML-based solution method for solving optimization

problem should have the capability to generalize to prob-
lem instances unseen during training [11]. In the context of
network optimization, we are particularly interested in neural
architectures enabling inference to network topologies of arbi-
trary size, possibly larger than the ones seen during training.
Previous works in [3], [15] propose algorithms based on
Graph Neural Networks (GNNs) for solving traffic engineering
problems. Though we share the intuition behind the use of
GNNs in the context of communication networks, in this work
we propose a simpler alternative based solely on Multi-Layer
Perceptrons (MLPs). In particular, as illustrated in [19] and
suggested in [7], we employ an MLP-based architecture that
can perform inference to instances of arbitrary size and is
equivariant with respect to the ordering of the inputs. Our
architecture sidesteps the complexity of the iterative message-
passing procedure of GNNs1.

1In GNNs, to ensure that each node receives information from every
other node, one needs a number of message-passing iterations equal to the
network diameter. In sparse graphs (e.g., an optical network), GNNs with
several hidden layers may suffer from issues such as oversmoothing [27] and
oversquashing [28]. Moreover, large inference times in deep GNNs are among
the most critical research challenges in the graph learning community [29].

We consider a neural architecture operating on sets of
decision variables (e.g., the weights associated to each link in
a network topology). Let n be the number of decision variables
in our problem instance. We associate m features to each
decision variable, hence, a state s is a matrix s ∈ Rn×m. Let
MLPθ be an MLP neural network parameterized by θ with m
inputs and one output. We can therefore process in parallel, via
batching, all decision variables’ features via the same single-
output neural network MLPθ. With reference to Eq. (3), our
architecture is equivalent to stacking multiple layers of the
form ol+1 = σ(olΛl), where ol and Λl are the parameters and
the outputs of the l-th MLP layer, respectively. We did not find
the additional transformation Θ to benefit performance, and we
opted for keeping the number of parameters to the minimum.
The policy π(a|s) can be therefore derived by aggregating the
outputs of each forward pass in MLPθ, e.g., via SoftMax.

A schematic representation of a policy network for a dis-
crete action space, i.e., where the policy π(a|s) defines a
categorical distribution, is illustrated in Fig. 2. In particular,
an action corresponds to choosing one among the decision
variables. Outputs from each forward pass of MLPθ are con-
sidered as non-normalized logits, which are then transformed
via the SoftMax operator. The outputs of the SoftMax define
a categorical distribution over the decision variables, realizing
the discrete action space policy π(a|s). Since each decision
variable shares the same MLPθ, the realized policy π(a|s),
i.e., the SoftMax aggregation over each individual output
from MLPθ, is permutation-equivariant with respect to the
input decision variables. This fundamental property makes
it possible to support arbitrily large state and action spaces,
which allows to apply the same pre-trained policy to problem
instances of arbitrary size without the need for retraining.

Actor-Critic DRL algorithms (e.g., PPO [25]) require both
an “Actor” network, parameterizing the policy π(a|s), and a
“Critic” network, parameterizing the value function V (s). We
can use the same architecture of Fig. 2 for implementing the
Critic network. For a discrete action space, we consider each
single output of MLPθ to represent an action-value function
Qϕ(s, a). From the action-value function, from which we can
compute the value function Vϕ(s) = Eπθ(a|s)[Qϕ(s, a)].

Thanks to fast batch parallelization, this neural architecture
can be very efficiently applied to problem instances of arbitrary
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size. Moreover, as outlined in Section III-B, this architecture
is permutation equivariant with respect to the ordering of
its inputs, i.e., the decision variables. We highlight that our
architecture resembles the “Readout” module placed before
the final outputs of a GNN [30].

At evaluation time we aim to assess the generalization capa-
bilities of DeepLS to problem instances unseen during training.
In particular, with our experimental results, we quantitatively
answer the following research questions:

1) Can our approach generalize to traffic distributions un-
seen during training?

2) Can our approach generalize to larger network topolo-
gies unseen during training?

3) Can our approach, if trained on short episodes (i.e., ex-
ecutions of Algorithm 1 where Niter is small) generalize
to longer episodes, therefore achieving better solutions
in the long run?

B. DeepLS for OSPF Weight Setting
1) Premise on the Multi-Commodity Flow problem (MCF):

optimal traffic engineering can be achieved by solving the
well-known Multi-Commodity Flow (MCF) problem. The
MCF problem can be formulated as a Linear Programming
(LP) optimization problem, hence it can be solved in polyno-
mial time. Let G(V,E) be a bidirectional graph where each
edge (u, v) ∈ E has capacity cu,v . Let ds,t be the flow units
that need to be routed from the source node s ∈ V to the des-
tination node t ∈ V . We define continuous decision variables
f t
u,v , representing the amount of flow with destination t ∈ V

routed on edge (u, v) ∈ E. As objective function, we consider
the minimization of the maximum normalized link load. The
LP formulation of the MCF problem reads as follows:

min max
(u,v)∈E

∑
t∈V

f t
u,v

cu,v
(4)∑

t∈V

f t
u,v ≤ cu,v ∀(u, v) ∈ E (5)∑

v∈V

f t
s,v −

∑
u∈V

f t
u,s = ds,t ∀s, t ∈ V, s ̸= t (6)

f t
u,v ≥ 0 ∀t ∈ V, ∀(u, v) ∈ E (7)

Objective function (4) minimizes the maximum normalized
link load, Eq. (5) are the maximum link capacity constraints,
and Eq. (6) are the flow conservation constraints. Being this
problem an LP, its optimal solution can be computed very
efficiently by commercial solvers.

2) The OSPF Weight Setting problem (OWS): let us now
consider the case in which routing configurations are deter-
mined by link-state protocols, such as OSPF, in which routes
are computed using Dijkstra’s algorithm on the weighted
network topology graph. In this context, the problem of
determining the edge weights realizing the optimal routing of
(4)-(7) is NP-Hard [31]. We therefore consider the problem
of finding the OSPF weights that minimize the maximum
link load in the network (4). We also consider Equal Cost
Multi-Path (ECMP) routing, i.e., flows directed to the same
destination are equally distributed among all shortest paths of
equal cost.

3) Formulating LS for OWS as an MDP: we consider an
LS algorithm where, at each iteration, the weight of one link
is increased and a new OSPF routing is computed.

State Space: we consider a state space where each link
in the network is associated to two features: i) normalized
link load, and ii) link weight. This is the same set of features
that was used in [3], for a fair comparison between the two
approaches.

Action Space: we consider a discrete action space of
dimension |E|. An action consists in choosing a link. The
chosen link has its associated weight incremented by one unit.
Integer weights allow for the possibility of having multiple
paths with the same total weight, in which flows will be
equally split as per ECMP. Again, to keep the comparisons
fair, this is the same action space that was used in [3].

Reward Function: we consider the immediate gain Rt =
Ot+1 − Ot, where Ot is the maximum normalized link
load at iteration t. We also experimented with the absolute
improvement Rt = max{0, Obest

t − Ot)}, where Obest
t is the

current best maximum link load found up to iteration t, but
we observed little difference in performance.

Worst-case Complexity: each iteration of DeepLS re-
quires recomputing the all-pairs shortest paths after the link
weight update and the new OSPF routing. In the worst case,
computing the all-pairs shortest paths in sparse graphs is
O(|V |2 log(|V |) with Johnson’s algorithm. The forward pass
in the DeepLS MLP neural network, considering it as a naive
matrix multiplication, is O(|E|F ), where F is the number of
edge features, and assuming the number of hidden neurons
and hidden layers to be constant terms. Finally, computing
the new OSPF routing with full traffic matrix is O(|V |3),
since the number of hops in the routes are bounded by the
total number of nodes. Assuming F ≪ |V |, the worst-case
time complexity of a single DeepLS iteration for OWS is
O(|V |2 log(|V |) + |V |3) = O(|V |3). The overall worst-case
complexity for running DeepLS for Niter iterations is therefore
O(Niter|V |3).

C. DeepLS for Routing and Wavelength Assignment

1) The Routing and Wavelength Assignment problem
(RWA): RWA consists in assigning a route and a wavelength to
a set of connection requests in an optical Wavelength Division
Multiplexing (WDM) network. We assume transparent optical
switching, hence wavelength continuity constraints must be
enforced for each established lightpath. The objective is to
maximize the number of established lightpaths. RWA can be
expressed as an Integer Linear Programming (ILP) optimiza-
tion problem as follows:

max
∑
p∈P

∑
w∈W

xw
p (8)∑

p|l∈p

xw
p ≤ 1 ∀l ∈ E, ∀w ∈W (9)

∑
p∈P(s,d)

∑
w∈W

xw
p ≤ ρ(s,d) ∀s, d ∈ V, s ̸= d (10)

xw
p ∈ {0, 1} ∀p ∈ P, ∀w ∈W (11)
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Where xw
p indicates whether or not wavelength w is oc-

cupied in path p, P is a set of pre-computed paths, and
ρ(s,d) is the number of connection requests between nodes
s and d. Constraints (9) are wavelength continuity constraints,
whereas constraints (10) ensure that the maximum number of
wavelengths per link is not exceeded.

2) Formulating an LS for RWA as an MDP: we consider
an LS algorithm where, at each iteration, the weight of one
link is increased and a new feasible solution is computed with
K-Shortest-Paths First-Fit (KSP-FF) on the weighted graph.

State Space: we consider a state space where each link
in the network is associated to three features: i) normalized
link load, ii) link weight, and iii) link betweenness centrality,
defined as the fraction of shortest paths that traverse that edge.
We empirically assessed that introducing this additional graph-
level feature leads to improved performance.

Action Space: we consider a discrete action space of
dimension |E|. An action consists in choosing a link. The
chosen link has its associated weight incremented by one unit.

Reward Function: we consider the immediate gain Rt =
Ot+1 −Ot, where Ot is the blocking rate at iteration t.

Worst-case Complexity: each iteration of DeepLS re-
quires computing the all-pairs K-shortest simple paths after
the link weight update2 and the routing and wavelength
assignment with KSP-FF. Computing the K-shortest simple
paths for a node pair in sparse graphs is O(K|V |2 log(|V |)
with Yen’s algorithm. Therefore, computing the all-pairs K-
shortest simple paths by iteratively calling Yen’s algorithm
is O(K|V |4 log(|V |). As before, the forward pass in the
DeepLS MLP neural network, being a matrix multiplication, is
O(|E|F ). Finally, to evaluate the new solution value, we need
to perform routing via KSP-FF. Determining the availability
of a continuous wavelength over a path is O(|V |W ), where
W is the number of wavelengths per link. Following up,
checking for wavelength availability in each of the K-paths is
O(K|V |W ). Routing all demands is therefore O(K|V |WD),
where D is the total number of demands. Assuming F ≪ |V |,
the worst-case time complexity of a single DeepLS iteration
for RWA is O(K|V |4 log(|V |) + K|V |WD). The overall
worst-case complexity for running DeepLS for Niter iterations
is therefore O(NiterK(|V |4 log(|V |) + |V |WD))

V. ILLUSTRATIVE EXPERIMENTAL RESULTS

In our experiments, we used Proximal Policy Optimization
(PPO) [25] for training the DRL agents, with the Stable
Baselines implementation [32]. The Actor and Critic networks
of PPO are implemented as the architecture illustrated in Fig.
2, where each MLP network has one single hidden layer with
16 neurons and Exponential Linear Unit (ELU) activation.
In total, the two networks have 2 · (m · 16 + 16 + 16 + 1)
trainable parameters, where m is the number of features
associated to each decision variable. At inference time, only
the policy network needs to be stored. In our problems, the
number of parameters of the policy networks is 65 and 81 for

2As the link weights can only be increased, path recomputation can be
performed only for the node pairs for which at least one of the K-shortest paths
traverses the modified link. While not improving the worst-case asymptotic
complexity, this leads to much shorter computational times in practice.

OWS and RWA, respectively. Moreover, in all experiments
we train on short episodes and evaluate on episodes at least
one order of magnitude longer than training. Finally, being
the environments CPU-bound, we leverage multiprocessing to
run 6 environments in parallel for gathering experience. All
of these tweaks allow to significantly reduce training times
down to few minutes without sacrificing performance. All
experiments were ran on a workstation with an Intel Core
i5-8400 CPU (6 cores @2.80 GHz) and 32 GB RAM.

Our source code is publicly available at the following link:
https://github.com/bonsai-lab-polimi/tnsm2023-deepls

A. OSPF Weight Setting problem
Training: we train only on the NSFNet topology with

uniform traffic distribution. For fair comparison, we consider
the same 100 training traffic matrices that were used in [3].
We train our model for 30000 episodes of length equal to
Niter=10. In each episode, a traffic matrix is randomly sampled
from the 100 training ones. For PPO, we set the rollout buffer
size to 128, and all other hyperparameters are left as their
default values in the Stable-Baselines3 [32] implementation.
The starting solution for DeepLS is computed as a standard
OSPF routing with all links having unit weight. This means
that our agent will be able to explore a small neighbourhood
in which the total difference between the starting weights
and the final weights can be at most equal to 10. On our
hardware, training takes approximately 6 minutes. This is an
improvement of more than two orders of magnitude compared
to MARL-GNN, whose training times elapsed on average 11
hours on our hardware.

Evaluation: we evaluate on NSFNet, GBN and GEANT2
with both uniform and gravity-based traffic distributions,
considering 100 test traffic matrices for each network-traffic
combination. The traffic matrices used for testing are the same
that were used in [3]. We therefore evaluate the generalization
capabilities of DeepLS both on traffic distributions and net-
work topologies unseen during training. We evaluate DeepLS
on episodes of length Niter=100 steps for NSFNet, Niter=150
for GBN and Niter=200 for GEANT2, for fair comparison to
[3]. Results are averaged over five different training seeds.

Baselines: we compare DeepLS against the following:
• Default OSPF: OSPF routing resulting from having all

link weights equal to one unit.
• MARL-GNN [3]: state-of-the-art GNN-based approach.

We trained and evaluated MARL-GNN using the open-
source code provided by the authors. For both training
and inference we employed the same training configura-
tion illustrated in the original paper. At inference time, we
evaluate MARL-GNN in the same settings (i.e., topology
and traffic distributions) in which it has been trained on.
Results are averaged over five different training seeds.

• LS-Greedy: greedy local search heuristic which, at each
timestep, selects the link that currently has the maximum
link-load and increments its weight by one unit. For a fair
comparison, LS-Greedy is run for a number of iteration
Niter=100, the same as DeepLS. The purpose of this
baseline is to outrule the possibility that DeepLS learned
a myopic greedy decision rule.
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• DEFO [13]: state-of-the-art optimizer for traffic engi-
neering, producing high-quality solutions. In particular,
DEFO does not compute OSPF weights, but per-flow
spitting ratios. These same solutions were considered as
baseline in [3], which we extracted from their publicly
available code repository. DEFO’s bytecode is publicly
available at [33], and the solutions reported are the best
found in the fixed 30s time limit.

• LP: for each traffic matrix we compute the optimal
solutions for the LP (4)-(7), which we report as a lower
bound for the best possible solution that can be achieved.

Numerical Results: in Fig. 3 we show the CDF of the
maximum link load achieved by DeepLS and by the baselines
on the test traffic matrices for NSFNet, GBN and GEANT2.
Generally speaking, we observe that DeepLS is able to gener-
alize out-of-the-box to larger test set instances unseen at train-
ing time, outperforming MARL-GNN and attaining similar
performance to DEFO in significantly shorter computational
times. In particular, we underline that only DeepLS is evalu-
ated on different network topologies and traffic distributions
than training, whereas for MARL-GNN we kept the training
and the evaluation settings the same.

Compared to LS-Greedy, DeepLS improves the maximum
link load, on average, by 2.7% on NSFNet-Uniform, by 1.9%
on NSFNet-Gravity, by 5.2% on GBN-Uniform, by 0.8% on
GBN-Gravity, by 3.4% on GEANT2-Uniform, and by 3.0%
on GEANT2-Gravity. As such, DeepLS consistently improves
on the myopic LS-Greedy thanks to its lightweight policy.

Compared to the MARL-GNN [3], DeepLS improves the
maximum link load, on average, by 5.6% on NSFNet-Uniform,
by 1.7% on GBN-Uniform, by 4.8% on GBN-Gravity, by
2.6% on GEANT2-Uniform and by 1.5% on GEANT2-
Gravity, while achieving slightly worse results (0.24% differ-
ence) only on NSFNet-Gravity. We remark that in NSFNet-
Uniform, GEANT2-Uniform and GBN-Gravity the GNN-
based approach is also outperformed by the myopic LS-
Greedy, whereas our DeepLS approach outperforms on av-
erage LS-Greedy in all of the considered scenarios3.

Furthermore, compared to the high-quality solutions com-
puted by DEFO, DeepLS improves on average the maximum
link load by 2.6% in GBN-Gravity, by 9.6% in GEANT2-
Uniform and by 1.4% in GEANT2-Gravity, while worsening
it by 5.1% in NSFNet-Uniform, 2.4% in NSFNet-Gravity, and
by 2.7% in GBN-Gravity. Overall, DeepLS ties with DEFO,
showing that it is on average capable to achieve solutions
of similar quality than a state-of-the-art approach in highly
diversified scenarios.

In terms of relative gap to the lower bound, DeepLS
achieves on average a 10.2% relative gap, whereas the con-
sidered baselines achieve relative gaps equal to 10.6%, 13.3%
and 14.24% for DEFO, LS-Greedy and MARL-GNN, respec-
tively. Even though there is still a non-negligible optimality
gap, on average DeepLS achieves slightly better performance

3This is somehow counterintuitive, as it appears that introducing a GNN
module before the readout network is actually worsening the final perfor-
mance. This can be imputed to a number of issues arising in GNNs such as
oversmoothing [27] and oversquashing [28], which may hinder the overall
final performance if not addressed properly.

than DEFO and significantly outperforms MARL-GNN. The
optimality gap of DeepLS can be imputed to the constraint
of equal flow split between shortest paths of equal cost. The
LP can decide on arbitrary flow splits, hence providing only
a lower bound on the optimal objective value for OWS.

We underline that OWS is a classical networking problem,
extensively studied for several decades. We do not aim to
outperform all state-of-the-art algorithm for OWS, but to
demonstrate the potential of augmenting well-known algo-
rithms with lightweight intelligence. In that regard, we have
shown that a simple DRL-augmented Local Search becomes
competitive with DEFO, a far more complex metaheuristic.

In Fig. 4 we illustrate the average running times per instance
of the proposed DeepLS approach against LS-Greedy and the
state-of-the-art MARL-GNN baseline. The times for LP are
not shown, as the LP does not solve OWS, but provides only a
theoretical lower bound on the solution value. We note that the
times for DeepLS and LS-Greedy are nearly identical, showing
that our lightweight neural architecture does not introduce
additional overhead to the LS algorithm, while consistently
improving on the solution quality. Compared to MARL-GNN,
our lightweight MLP-only approach achieves on average an
83% speedup4, while achieving solutions of better quality
and with training times two order of magnitude smaller. A
detailed comparison between the worst-case time complexities
of DeepLS for OWS and the considered baselines is provided
in Appendix A-A.

B. Routing and Wavelength Assignment problem

Training: we train on the NSFNet topology assuming 10
wavelengths per link and traffic matrices of 100 uniformly-
distributed source-destination requests. We train our model for
10000 episodes of length equal to Niter=10. For PPO, we set
the rollout buffer size to 128, and all other hyperparameters
are left as their default values in the Stable-Baselines3 [32]
implementation. For each episode, a traffic matrix is randomly
generated from a uniform distribution between all possible
source-destination pairs. The starting solution for DeepLS is
computed via KSP-FF with all links having unit weight. On
our hardware, DeepLS takes approximately 10.6 minutes to
train.

Evaluation: we evaluate DeepLS on NSFNet, GEANT2
and a synthetic 50-node Gabriel graph. Gabriel graphs have
been observed, among different graph generators, to better
capture the structure of physical layer network topologies [34].
We consider networks with 80 wavelengths per link and 800
uniformly distributed source-destination requests. We evaluate
on episodes of length equal to Niter=100 for each network
topology. Results are averaged over five training seeds.

Baselines: we compare DeepLS against the following:

• KSP-FF: default K-Shortest-Paths First-Fit routing with
links having equal unit weight. We consider K=3 shortest
paths for each source-destination pair.

4Authors of [3] used a slightly less time-efficient algorithm for recomputing
the all-pairs shortest paths at each MARL-GNN iteration. With their algorithm,
our relative speedup becomes 66% on average.
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Fig. 3. CDFs of the maximum link load achieved by DeepLS and the considered baselines on 100 test traffic matrices.
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Fig. 4. Average computational times of DeepLS per OWS problem instance
against LS-Greedy and the state-of-the-art MARL-GNN [3]. Computational
times for DEFO [13] are fixed to 180s.

• LS-Greedy: greedy local search heuristic which, at each
timestep, selects the link that currently has the maximum
load and increments its weight by one unit. The link load
is measured as the ratio between the number of occupied
wavelengths and the number of available wavelengths.
For a fair comparison, LS-Greedy is run for a number of
iteration Niter=100, the same as DeepLS.

• PPO-FF [6]: state-of-the-art DRL-based algorithm that

processes the traffic matrix sequentially while querying
a DRL agent for routing and admission control. The
DRL agent either chooses one among the available K-
shortest paths or for issuing a proactive rejection. In case
of request admission and routing, wavelength assignment
is performed by first-fit.

• GA-FF [35]: state-of-the-art Genetic Algorithm for solv-
ing RWA. In particular, GA-FF optimizes only the routing
assuming the precomputation of K-shortest paths, and
performs wavelength assignment by first-fit. We consider
K=3 shortest paths for each source-destination pair. We
consider a large population size of 1000 individual, and
we run the algorithm until it reaches convergence, i.e.,
the objective function value is not improving after a large
number of iterations.

• ILP: for each traffic matrix we compute the optimal
solutions of the ILP (8)-(11), which we report as a
lower bound for the best possible solution that can
be achieved. We consider K=3 shortest paths for each
source-destination pair.

Numerical results: in Fig. 5 the CDFs of the blocking rates
achieved by DeepLS and the considered baselines are shown.
Similarly to OWS, we observed that DeepLS generalizes out-
of-the-box for larger problem instances unseen during training,
achieving from similar to better solutions than GA-FF in
significantly shorter computational times.

Compared to LS-Greedy, DeepLS achieves a relative im-
provement of 17% on NSFNet, 32% on GEANT2 and 40%
on the 50-node Gabriel graph. Remarkably, LS-Greedy com-



10

0.100 0.125 0.150 0.175 0.200 0.225 0.250
Blocking Rate

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

DeepLS
LS-Greedy
PPO-FF
GA-FF
KSP-FF
ILP

(a) NSFNet

0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18
Blocking Rate

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

DeepLS
LS-Greedy
PPO-FF
GA-FF
KSP-FF
ILP

(b) GEANT2

0.050 0.075 0.100 0.125 0.150 0.175 0.200 0.225
Blocking Rate

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

DeepLS
LS-Greedy
PPO-FF
GA-FF
KSP-FF
ILP

(c) Gabriel graph

Fig. 5. Empirical CDFs of the blocking rates achieved by DeepLS and the considered baselines on 100 test traffic matrices.
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Fig. 6. Average computational times of DeepLS per RWA problem instance
against a state-of-the-art Genetic Algorithm (GA) for RWA.

pletely fails to improve the starting KSP-FF solution. Empir-
ically, we observed that LS-Greedy reaches stagnation almost
immediately, repeatedly incrementing the weight of the same
edge without improving the blocking rate. This illustrates that,
unlike for the OWS problem, more sophisticated neighbour-
hood exploration strategies are required for achieving good
quality solutions via Local Search.

Compared to PPO-FF, DeepLS achieves a relative im-
provement of 11% on NSFNet, 17% on GEANT2, and 29%
on the 50-node Gabriel graph. These results illustrate that
DeepLS brings a significant improvement in state-of-the-art
DRL-based algorithms for solving static routing problems in
optical networks. Moreover we underline that PPO-FF, while
consistently outperforming KSP-FF, falls short against more
complex traditional optimization algorithms such as GA-FF.

Finally, compared to GA-FF, DeepLS achieves solutions
on average 17.6% better than GA-FF on GEANT2 and solu-
tions of comparable quality on NSFNET and on the 50-node
Grabriel graph (on average 1.6% and 0.8% worse, respec-
tively). This is a remarkable result, showing that a weaker
heuristic such as Local Search, enhanced by lightweight
learning intelligence, can become competitive with respect to

a handcrafted metaheuristic.
In Fig. 6 we illustrate the computational times of DeepLS

compared to LS-Greedy, PPO-FF and GA-FF. The times for
ILP are not shown: while it is possible to solve RWA on
NSFNET in few seconds, computational times for GEANT2
and the 50-node Gabriel graph are out of scale. Compared to
LS-Greedy, DeepLS is 48% slower: we empirically verified
that this is because DeepLS triggers more K-shortest paths
recomputations compared to LS-Greedy, leading to a more
effective exploration of the solution space. Indeed, as shown
before, LS-Greedy fails to improve the starting KSP-FF so-
lution. PPO-FF is the fastest among all baselines since, by
design, its runtime is only slightly slower than standard greedy
heuristics such as KSP-FF. Unfortunately, as previously out-
lined, it often falls short in terms of solution quality compared
to advanced metaheuristics. Compared to GA-FF, DeepLS
achieves on average a 93% speedup, with computational times
equal at most to 20s for the 50-node Gabriel Graph. Overall,
DeepLS can compute solutions either on-par or better than a
fine-tuned GA in significantly shorter computing times. A de-
tailed comparison between the worst-case time complexities of
DeepLS and the considered baselines is provided in Appendix
A-B.

Again, DeepLS is able to generalize to larger problem
instances on network topologies unseen during training. This
allows us to keep training times to the minimum, as it is
possible to train only on the least computationally intensive
settings (i.e., smaller network topologies, smaller network
capacity and lower total number of demands).

In terms of optimality gap with respect to the ILP, DeepLS
achieves on average a 21.9% gap, whereas the baselines
achieve gaps equal to 45.4% and 25.1% for LS-Greedy and
GA-FF, respectively. The non-negligible optimality gap of
DeepLS can be imputed to the limitations of a First-Fit wave-
length assignment strategy. We underline that, for DeepLS, the
smallest optimality gap of 13.1% was observed for the largest
problem instances, i.e., on the 50-node Gabriel graph.

Again, RWA is a well-known problem in networking.
Our aim is not to beat all state-of-the-art approaches for
RWA, but to illustrate that simple algorithms enhanced with
lightweight artificial intelligence can become more powerful
than significantly more complex handcrafted algorithms. In
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our case, DeepLS either outperforming or matching GA on
the largest instances in far shorter computing times highlights
the disruptive potential of ML alongside OR.

VI. CONCLUSION

In this paper, we proposed a lightweight DRL-augmented
Local Search algorithm (DeepLS), and we applied it to
the OSPF Weight Setting problem and the Routing and
Wavelength Assignment problem. Leveraging a permutation-
equivariant neural network operating on sets of decision vari-
ables, DeepLS can evaluate problem instances of arbitrary
size, showing remarkable generalization capabilities to net-
work topologies, traffic distributions, network capacities and
network loads unseen during training. DeepLS, composed by
less than a hundred parameters, outperforms state-of-the-art
DRL-based approaches in literature and achieves competi-
tive performance compared to state-of-the-art metaheuristics,
while being on average faster than both. Overall, our results
show that incorporating lightweight learning intelligence in
existing methodologies can be the cornerstone for designing
powerful and scalable network-optimization algorithms. As the
proposed methodology is general, future research directions
include applying DeepLS to more complex neighbourhood
definitions (e.g., rerouting, ejection chains), more complex
network-optimization problems (e.g., Routing, Modulation for-
mat and Spectrum Assignment in Elastic Optical Networks,
optimization of Service Function Chaining), and more sophis-
ticated metaheuristic frameworks (e.g., Iterated Local Search,
Variable Neighbourhood Search, Ruin&Recreate).

APPENDIX A
WORST-CASE COMPLEXITY ANALYSIS

In this Appendix, we compare the worst-case complexities
of the considered baselines against DeepLS for both the OSPF
Weight Setting problem and the Routing and Wavelength
Assignment problem.

A. OSPF Weight Setting problem

We previously demonstrated that the worst-case time com-
plexity of DeepLS for OWS is O(Niter|V |3). The worst-case
time complexities of the considered baselines are as follows:

• Default OSPF: requires computing the all-pairs shortest
paths and distributing the demands. Hence, as shown for
a single iteration of DeepLS, the complexity is O(V 3).

• MARL-GNN [3]: requires a forward pass on the line
graph of the network topology. The time complexity of
the forward pass is therefore proportional to the number
of edges in the line graph of the network topology, i.e.,
O(L|V ||E|), where L is the number of GNN layers. As
the algorithm requires at each iteration to recompute all-
pairs’ shortest paths and to distribute the demands, the
overall time complexity is O(Niter(|V |3 + L|V ||E|)).

• LS-Greedy: equal to DeepLS, as LS-Greedy misses only
the neural network policy, whose computational complex-
ity can be elided.

• DEFO [13]: with reference to [36], DEFO alternates
between destruction and recreation procedures for gener-
ating an optimal forwarding plane configuration. The time
complexity of recreation is O(Niter|E||V |2 log |V |)), as it
requires repeated sorting of the nodes and propagation
of the link load constraints. The time complexity of
destruction, compared to recreation, can be elided.

We underline that asymptotically running DeepLS is as com-
plex as running the Default OSPF heuristic Niter times. Indeed,
the complexity is upper-bounded by the evaluation of the
objective function value and the link loads. Finally, while
MARL-GNN and DeepLS show similar worst-case time com-
plexities, we illustrated in Fig. 4 that DeepLS scales much
better with instance size thanks to its extremely lightweight
neural network architecture.

B. Routing and Wavelength Assignment problem

We previously demonstrated that the the worst-case time
complexity of DeepLS for RWA is O(NiterK(|V |4 log(|V |) +
|V |WD)). The worst-case time complexities of the considered
baselines are as follows:

• KSP-FF: requires computing the all-pairs’ K-shortest
paths and to distribute the demands. Therefore, the worst-
case complexity is O(K|V |4 log(|V |) +K|V |WD).

• LS-Greedy: equal to DeepLS, as LS-Greedy misses only
the neural network policy, whose computational complex-
ity can be elided.

• PPO-FF [6]: requires computing the all-pairs’ K-shortest
paths and querying the DRL agent for each connection
request in the traffic matrix. As the state space of PPO-FF
is O(|V |), the computational complexity of routing the
full traffic matrix is O(K|V |2WD. Therefore, the com-
putational complexity of PPO-FF is O(K(|V |4 log(|V |)+
|V |2WD)).

• GA-FF [35]: the algorithm optimizes the ordering of
demands and the chosen routing, whereas wavelength
assignment is performed with a first-fit rule. As such,
the worst-case complexity of the algorithm is bounded
by the fitness function calculation, i.e., the evaluation of
the objective function value given a request ordering and
a choice of routing for every request. Assuming that the
all-pairs’ K-shortest paths have been precomputed, the
overall time complexity is O(NiterK|V |WD · Pop Size),
where Pop Size is the population size (i.e., the number
of candidate solutions to be kept at each iteration of
GA-FF). In practice, it holds that Pop Size = O(KD),
as a common rule of thumb is to set the popula-
tion size proportional to the number of variables (i.e.,
genes) in a candidate solution, which in our cases are
one per demand. Hence, the overall time complexity is
O(NiterK

2|V |WD2).
Similarly to what we observed for OWS, running DeepLS
is as time-consuming as running KSP-FF Niter times. In
this regard, while PPO-FF scales significantly better than
DeepLS, as it does not have to recompute the K-shortest-
paths, but significantly underperforms in terms of solution
quality. Finally, we underline that while the time-complexities
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for DeepLS and GA-FF may be difficult to compare in the
current form, it is reasonable to assume that O(D) = O(|V |2)
(e.g., considering a full-mesh traffic matrix). Hence, the
time-complexities of DeepLS and GA-FF further simplify to
O(KNiter(|V |4 log(|V |) + W |V |3)) and O(NiterK

2W |V |5),
respectively. Therefore, DeepLS not only provides similar to
better solutions than GA-FF, but also scales better with respect
to the instance size, as we empirically demonstrated in Fig. 5
and Fig. 6.
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P. Barlet-Ros, and A. Cabellos-Aparicio, “Is machine learning ready
for traffic engineering optimization?” in 2021 IEEE 29th International
Conference on Network Protocols (ICNP), 2021, pp. 1–11.

[4] D. Aureli, A. Cianfrani, M. Listanti, and M. Polverini, “Intelligent
link load control in a segment routing network via deep reinforcement
learning,” in 2022 25th Conference on Innovation in Clouds, Internet
and Networks (ICIN), 2022, pp. 32–39.

[5] X. Chen, J. Guo, Z. Zhu, R. Proietti, A. Castro, and S. J. B. Yoo, “Deep-
rmsa: A deep-reinforcement-learning routing, modulation and spectrum
assignment agent for elastic optical networks,” in 2018 Optical Fiber
Communications Conference and Exposition (OFC), 2018, pp. 1–3.

[6] N. Di Cicco, E. F. Mercan, O. Karandin, O. Ayoub, S. Troia,
F. Musumeci, and M. Tornatore, “On deep reinforcement learning for
static routing and wavelength assignment,” IEEE Journal of Selected
Topics in Quantum Electronics, vol. 28, no. 4, pp. 1–12, 2022.

[7] A. H. C. Correia, D. E. Worrall, and R. Bondesan, “Neural simulated
annealing,” 2022. [Online]. Available: https://arxiv.org/abs/2203.02201

[8] I. Bello, H. Pham, Q. V. Le, M. Norouzi, and S. Bengio, “Neural
combinatorial optimization with reinforcement learning,” 2016.

[9] O. Vinyals, M. Fortunato, and N. Jaitly, “Pointer networks,” in Advances
in Neural Information Processing Systems, C. Cortes, N. Lawrence,
D. Lee, M. Sugiyama, and R. Garnett, Eds., vol. 28, 2015.

[10] M. Gasse, D. Chetelat, N. Ferroni, L. Charlin, and A. Lodi, “Exact
combinatorial optimization with graph convolutional neural networks,”
in Advances in Neural Information Processing Systems, H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett,
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