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Abstract—In the evolving scenario of 5G end-to-end networks,
optical transport networks provide the connectivity between the
mobile edge and the mobile core network. According to the
functional decoupling of the base station into the Remote Radio
Unit (RRU) and the Baseband Unit (BBU), the latter can be
virtualized into a cloud computing platform to access the mobile
core. As a consequence, BBU virtual network functions related
to different RRUs can be centralized and replicated in a subset
of the nodes of the transport network with the aim of optimized
reliable design.

In this paper a scalable methodology, based on lexicographic
optimization, is proposed for the solution of a multi-objective
optimization problem to achieve, among other goals, the mini-
mization of the number of active nodes in the transport network
while supporting reliability and meeting latency constraints.
The proposed solution method is compared to an aggregate
optimization approach, showing that the former is capable of
proving the optimality of the most relevant components of the
multi-objective function (minimization of the number of active
nodes and of the number of hops) for instances of medium size,
and finds better solutions for instances with a larger number
of nodes, namely several tens. The computing times to find
an optimal solution for the most relevant objectives are much
shorter than those required to solve the aggregate model, even
for networks of several tens of nodes.

Index Terms—Optical Transport Networks, Optimization, Re-
liability, C-RAN, Latency

I. INTRODUCTION

Optical transport networks represent the aggregation in-
frastructure to support the increasing radio access capacity
of fifth generation mobile networks, namely 5G networks.
Optical transport networks provide interconnection based on
the Cloud Radio Access Network (C-RAN) model, where the
functionality of the Baseband unit (BBU) is fully decoupled
from the Remote Radio Unit (RRU) and virtualized into a
cloud computing platform. RRUs exchange digitized radio
samples with the cloud platform using a high capacity fron-
thaul connection.

A backhaul network is then responsible of the connection
of virtualized BBU functions to the mobile core. As a con-
sequence of virtualization, BBU functions related to different
RRUs can be hosted in the same node, called BBU Hotel.
This approach has the advantage to reduce the number of
active processing nodes in the transport network, with some
advantage in cost reduction (pooling gain), but it is expected
to need additional connectivity to support the fronthaul, which

requires very costly dark fibers used in a circuit switched basis
[2]. An evolution of the pure C-RAN scheme is represented
by the Next Generation Fronthaul Interface that introduces
packet-based interconnection and further functional split in the
optical transport network [1].

One of the major challenges for optical transport network
design is represented by the Ultra Reliable Low Latency
Communication (URLLC) service class, as defined in the
5G context. This class of service is referred to emerging
applications with particular time critical and reliability require-
ments, like autonomous driving or industrial processes. When
allocating BBU functions to a BBU hotel, delay constraints
need to be met, according to service requirements, that impact
on the distance between the BBU Hotel and the served RRU.
In any case the BBU hotel, as hosting multiple BBU functions,
result in a critical system as far as reliability requirements
which call for proper redundancy of the BBU function in the
transport network and further impact on the scalability [3], [4].

By considering all the aspects above, the optimized design
of the optical transport network results in a multi-objective
problem, whose solution is rather complex and suffers of
scalability issues in relation to the value of the parameters
that characterize the system, like the number of nodes of
the transport network and the number of wavelengths on the
optical links.

Previous works from the literature consider the optimization
problem of reliable C-RAN transport network and apply
Integer Linear Programming (ILP) modelling, showing some
limitations on the size of the transport network (in terms of
number of nodes) that can be solved in acceptable execution
time by using a commercial solver [3], [5]. In [3] the opti-
mization of transport network cost with respect to the number
of nodes, connections and interfaces with reliability support in
the presence of single BBU hotel failure is provided, showing
the effectiveness of the approach mainly for network of a few
tens of nodes. In real networks, the number of nodes could sen-
sibly increase in the future, especially in scenarios where the
processing capability is further split and distributed over the
geographical area. Investigating algorithmic solution methods
capable of easily calculating the optimal allocation of BBU
functions while providing reliability are, as a consequence, of
particular interest.

Given that the components of the multi-objective function



are not equally important but rather characterized by different
relevance [3], the idea of this paper is to adopt a lexicographic
approach that optimizes a sequence of single-objective prob-
lems, each one having as goal one term of the multi-objective
function. These problems are solved in decreasing order of
the importance of the associated objective function. For each
subsequent problem, a constraint is imposed that limits the
value of the objective function associated with the previous
problem.

The proposed lexicographic approach is compared to an
aggregate multi-objective ILP model [3], showing that the
former is capable of better handling networks of larger size:
it is capable of proving the optimality of the most relevant
components of the multi-objective function (minimization of
the number of active nodes and of the number of hops) for
instances of medium size, and finds better solutions for larger
size networks with 100 nodes. In addition, the results for the
most relevant objectives are obtained by the lexicographic
approach in shorter computing times than by solving the
aggregate ILP model.

The paper is organized as follows. In section II the reference
scenario and the problem statement are introduced. In section
III the lexicographic method is described. In IV the result
obtained are discussed. In section V conclusions are drawn
and further work is presented.

II. REFERENCE SCENARIO AND PROBLEM STATEMENT

In figure 1 the reference transport network with the main
elements considered in the model is presented, according
to [3]. A set of RRUs equipped with antennas covers a
geographical area. Each RRU is connected to a node to access
the transport network where BBU functionality is located. The
transport network consists of a set of nodes interconnected by
WDM optical fibers acting as fronthaul segments, according
to the C-RAN principle. A node enabled to perform BBU
processing as virtual network function is called BBU hotel.
Support for reliability is provided with reference to single
BBU hotel failure by assigning primary and backup BBUs to
each RRU in distinct nodes. The access to BBU functionalities,
either primary or backup, is referred as port. Backup ports can
be shared by RRUs with different primary nodes. RRUs with
the same primary node need to have distinct backup ports.
As a consequence, the main elements of a transport networks
to support C-RAN are the nodes, the ports within nodes and
the wavelengths on each link. The C-RAN model allows
to centralize BBU functions in a few nodes thus reducing
the number of nodes in the transport network that needs
to be activated. This means cost saving in terms of power
consumption and network management. At the same time a
larger number of wavelength is required when centralizing due
to longer paths to reach the BBU hotel. Furthermore, higher
number of hops, and consequently higher delay, is introduced
with centralization. Transport network cost can be optimized
in relation to a cost function associated to these elements and
this results in a multi-objective optimization function.

Fig. 1. Main elements of the transport networks.

In the past, different approaches, based on ILP models or
heuristics, have been proposed for the solution of the above
optimization problem, each one showing its pros and cons [3],
[5], [6]. In particular, solving the ILP models by a solver has
been shown to have scalability limitations that the heuristics
are typically suited to overcome [6].

The method proposed in this paper aims at improving the
scalability performance of previous proposals by adopting a
lexicographic optimization approach [7], based on multiple-
step optimization made of single-objective problems which
are solved in decreasing order of the priority of the associ-
ated objective function. Previous application of lexicographic
methodology at communication systems can be found in
literature, such as [8], [9].

The optimization problem considered here is NP-hard and
is characterized by a multi-objective goal aiming at the min-
imization of three terms, with decreasing priority order as
assumed in [3] and according to the considered application:
the cost CB of activating nodes for hosting BBU hotels, the
cost CH of the total hops needed to connect BBU hotels
and RRUs, and the cost CP of installing backup ports (the
number of primary ports does not have to be optimized since
it is equal to the total number of RRUs). As a consequence,
the overall optimization consists of a three-step optimization
approach with each optimization step being NP-hard.

III. LEXICOGRAPHIC OPTIMIZATION

In this section, the objective function and the constraints of
each single-objective problem that need to be solved at each
step are described. All the parameters and decision variables
used in this section are reported in Table I.

A. Step 1: Minimization of CB

This step is used to determine the optimal activation cost of
BBU hotels in transport nodes. The ILP model solved in this
step reads as follows:



TABLE I
MODEL PARAMETERS AND VARIABLES

Parameters

S Set of transport nodes. |S| = s
H s× s matrix. hij is the distance in hops between nodes i and j

computed with the shortest path.
α Weight for the distance in the cost function.
β Activation cost for a single BBU hotel.
γ Cost for a BBU hotel port.
ri Number of RRUS at site i, i ∈ S.
δlij 1 if shortest path between i and j is using link l, 0 otherwise, i,

j ∈ S, l ∈ L
MW Maximum number of wavelengths available in each link.
MH Maximum allowed distance in hops between RRU and BBU.
L Set of links.

Variables

Bj 1 if node j ∈ S hosts a BBU hotel, 0 otherwise
pij 1 if BBU hotel j is assigned as primary for RRUs at node i, i,

j ∈ S, 0 otherwise.
bij 1 if BBU hotel j is assigned as backup for RRUs at node i, i,

j ∈ S, 0 otherwise.
yj Number of BBU ports required at hotel site j for backup

purposes, j ∈ S.
cijj′ 1 if RRUs at node i are using destination j as primary and j′ as

backup hotel site, i, j, j′ ∈ S, 0 otherwise.

minCB , CB =
∑
j∈S

Bj (1)∑
j∈S

pij = 1 ∀i ∈ S (2)∑
j∈S

bij = 1 ∀i ∈ S (3)

pij + bij ≤ Bj ∀i, j ∈ S (4)
(pij + bij) · hij ≤MH ∀i, j ∈ S (5)∑

i∈S

∑
j∈S

(pij + bij) · δlij · ri ≤MW ∀l ∈ L (6)

Bj ∈ {0, 1} ∀j ∈ S (7)
pij ∈ {0, 1} ∀i ∈ S, j ∈ S (8)
bij ∈ {0, 1} ∀i ∈ S, j ∈ S (9)

The objective function (1) requires to minimize the activa-
tion cost expressed as the number of nodes hosting a BBU
hotel. Constraints (2) and (3) impose, respectively, that one
primary node and one backup node are associated with each
node where a RRU is located. Constraints (4) are used to
count the number of active nodes and to impose that each
node can only be used as primary or as backup (but not both).
The maximum distance, expressed as number of hops, between
any two nodes is limited to MH in constraints (5). Constraints
(6) limit the number of wavelengths over each link to MW .
Due to constraints (4), either pij or bij can be equal to 1 in
constraints (5) and (6). Finally, constraints (7)-(9) define the
variable domains.

B. Step 2: Minimization of CH

In this step, the objective is the minimization of the distance,
expressed as the number of hops needed to connect BBU

hotels and RRUs. The ILP model solved in this step reads
as follows:

minCH , CH =
∑
i∈S

∑
j∈S

(pij + bij) · hij (10)

(2)− (9)∑
j∈S

Bj ≤ C∗B (11)

The objective function (10) is the minimization of the total
number of hops. All the constraints defined in the ILP model of
step 1 are imposed: indeed, here we have to define the optimal
assignment of primary and backup nodes (and, consequently,
the number of active nodes) so as to minimize the number of
hops. However, the number of active nodes is limited to C∗B
with constraint (11): this means that the optimal solution value
of step 1 reduces the search space in step 2.

C. Step 3: Minimization of CP

The last step deals with the complete problem, where,
however, there is a single objective (the minimization of the
cost of installing backup ports), and the optimal values of the
first two objectives are imposed as constraints (see constraints
(11) and (15)). The ILP model solved in this step reads as
follows:

minCP , CP =
∑
j∈S

yj (12)

(2)− (9), (11)
cijj′ ≥ pij + bij′ − 1 ∀i, j, j′ ∈ S, j 6= j′ (13)

yj′ ≥
∑
i∈S

cijj′ · ri ∀j, j′ ∈ S, j 6= j′ (14)∑
i∈S

∑
j∈S

(pij + bij) · hij ≤ C∗H (15)

∑
j∈S

yj ≥
∑

i∈S ri

C∗B − 1
(16)

yj ≥ 0, integer ∀j ∈ S (17)
cijj′ ∈ {0, 1} ∀i ∈ S, j ∈ S, j′ ∈ S, j 6= j′ (18)

The objective function (12) requires to minimize the in-
stallation cost of backup ports. All constraints of step 1 are
imposed, since the choice of active nodes and of primary
and backup nodes are not imposed from the previous steps.
However, we limit the search space by the optimal values
obtained in the previous steps (constraints (11) and (15)). Con-
straints (13) is used to define if a node i is using destination
j as primary and j′ as backup nodes (i, j, j′ ∈ S, j 6= j′),
and constraints (14) determine the number of needed backup
ports for each active BBU hotel. As expected, this step is the
hardest to be solved, especially due to the large number of
variables cijj′ . By preliminary computational experiments, we
observed that weak lower bounds were obtained by solving
the Linear Programming relaxation of this model. In order
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Fig. 2. Relative gaps of the two approaches for different instances, varying
the maximum distance MH . A:= Aggregate, L = Lexicographic.

to improve this lower bound, we added constraint (16) that
computes the minimum number of backup ports required in
any optimal solution. It corresponds to the ratio between the
total number of RRUs and the number of active nodes minus
one. Indeed, recall that RRUs can share backup ports if they
have different primary BBU hotels. Therefore, the minimum
number of backup ports is obtained by considering the largest
number of different primary nodes: the latter coincides with
the number of active nodes, but we cannot assign the same
node as primary and as backup (see constraints (4)), hence we
subtract one.

The aggregate multi-objective model consists of considering
the minimization of the weighted sum given by β · CB + α ·
CH +γ ·CP with β � α� γ (as in [3]) under all constraints
reported in step 3, except for constraint (16) since it would
lead to a non-linear model.

The aggregate model and each step of the lexicographic
approach will be solved by a general-purpose ILP solver.

There are two main advantages of the lexicographic method
with respect to solving the aggregate multi-objective model:
the first one is that in the first and second steps only a subset
of variables and constraints has to be considered, thus leading
to models that are “easier” than the aggregate multi-objective
one; the second advantage is that, when the optimal solution to
the problem cannot be found due to time limits, we may still
be able to guarantee the optimality of some steps (typically,
the first two steps).

IV. NUMERICAL EVALUATIONS

In this section the effectiveness of the lexicographic ap-
proach is evaluated and compared with the aggregate multi-
objective model developed in [3]. The numerical results
were obtained by using the commercial solver CPLEX
12.10, running on an Intel Core i9-9900K@4.8GHz with
32GB@3000MHz RAM. The time limit for execution was set
to 1 hour. In the lexicographic approach, the time limit was set
to 200 seconds for step 1, 200 seconds for step 2, and 3200
seconds for step 3. Four regular Lattice networks of 36, 49,
64 and 100 nodes were considered, with ri = 10 RRU per
node (i ∈ S) and a maximum of MW = 80 wavelengths per
link. In the numerical evaluations, β = 106, α = 103, and,
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Fig. 3. Execution times of the first two steps of the lexicographic for different
instances. S1 = Step 1, S2 = Step 2, varying the maximum distance MH .

γ = 1 were used as weights in the multi-objective function
of the aggregate model as in [3], thus imposing the hierarchy
among objectives required by the application scenario. The
lexicographic approach bypasses the use of such large weights,
avoiding potential numerical issues during execution. Since the
two approaches have different objective values, the equivalent
gap for the lexicographic is defined as follows:

Geq =
Ceq − LBeq

Ceq
(19)

Ceq = β · C∗B + α · C∗H + γ · C∗P (20)
LBeq = β · LB(CB) + α · LB(CH) + γ · LB(CP ) (21)

where LB(·) is the best lower bound value achieved by the
solver in the execution time limit for the corresponding model
in each step, and C∗ is the objective value of the best solution
found in that step.

Figure 2 reports the relative percentage gaps of the two
approaches for the four networks and MH equal to 5 or
6 (see Table II for more details). When MH = 5, the
relative percentage gap of the lexicographic approach is at
most 0.0042% for all instances, hence it is not reported, while
the aggregate model has a gap of about 15% for two instances.
When MH = 6, near-optimal solutions are obtained by the
lexicographic approach for all the instances with up to 64
nodes, while the aggregate model shows much larger gaps
(more than 10%). For the network with 100 nodes, the relative
gap increases also for the lexicographic approach, in particular
for MH = 6, but it is significantly smaller (about 1/3) than
the gap of the aggregate model.

In Figures 3 and ?? the computing times required by the
lexicographic approach (steps 1 and 2) and by the aggregate
model are reported, respectively.

For all instances but the largest one (no matter the MH

value), the lexicographic approach requires very short comput-
ing times and obtains optimal or near-optimal solutions. For
the network with 100 nodes, the computing time increases:
when MH = 5, the lexicographic approach obtains a near-
optimal solution, while, when MH = 6, step 1 reaches the
time limit of 200 seconds. The aggregate model requires much
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longer computing times (see Figure 3) and reaches the time
limit of 3600 seconds for most instances.

Although the third step of the lexicographic approach
reaches the time limit for most instances, the advantage of this
method is that it is able to obtain proven optimal solutions
for what concerns the first two objectives. Since the third
component of the objective function has a much smaller weight
than the first two, these solutions are also near-optimal ones
for the multi-objective problem.

In Figure 4 the required number of BBU Hotels in the
considered networks for different distance values are shown.
As the distance value increases, the number of required BBU
hotels decreases sharply. Correspondingly, as shown in Figure
5, the total number of wavelengths increases with the distance
value. In fact, as the number of BBU hotels decreases, more
wavelengths are required in the interconnection networks to
connect RRUs to their assigned primary and backup BBU
hotels. In addition, as the distance value increases, further
minimization of the number of BBU hotels becomes increas-
ingly difficult. This is because as the number of BBU hotels
decreases, constraints (6) become more tight due to the greater
number of total wavelengths to distribute in the links.

In Figure 6 the average number of hops required by RRUs
to reach their BBU primary or backup hotel is shown. In our
reference networks, as the distance constraints get less tight,
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the average number of hops does not exceed 3. In particular,
considering figure 4, one can observe that centralization does
not result in a severe increase of the average number of hops,
furthering our choice for the lexicographic ordering of the
objectives. In addition, since our reference networks have the
same structure, the average number of hops results to be
mostly independent from the number of nodes.

In Figure 7 the number of needed primary and backup
wavelengths for the 64 node network is shown. The additional
backup wavelengths, for each distance value, show similar
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TABLE II
RESULTS OF THE LEXICOGRAPHIC AND AGGREGATE APPROACHES.

Approach |S| MH CB CH CP Gap%

Lexicographic 36 5 4 156 180 0
Aggregate 36 5 4 156 180 19.16
Lexicographic 36 6 3 194 180 0
Aggregate 36 6 3 194 180 0

Lexicographic 49 5 4 259 250 0.0022
Aggregate 49 5 4 259 250 0
Lexicographic 49 6 4 259 250 0.0022
Aggregate 49 6 4 259 250 11.21

Lexicographic 64 5 5 348 300 0.0026
Aggregate 64 5 5 348 290 0.0002
Lexicographic 64 6 5 344 270 0.002
Aggregate 64 6 5 356 220 18.16

Lexicographic 100 5 8 506 500 0.0042
Aggregate 100 5 8 535 470 15.37
Lexicographic 100 6 8 506 540 23.5
Aggregate 100 6 18 607 280 68.9

values as the needed primary wavelengths. This is because
primary and backup hops were given the same level of priority
in our lexicographic ordering.

In Figure 8 the number of needed primary and backup ports
for the 64 nodes network is shown. As mentioned before,
the number of primary ports is constant, since they cannot
be shared, and equal to the sum of all RRUs. The overall sum
of backup ports is minimized, albeit with lowest priority. As
an example, for MH = 3 a larger number of backup ports is
obtained as a consequence of the higher priority in minimizing
the total number of hops.

In Table II the objective values and relative percentage gaps
obtained by the lexicographic and aggregate approaches are
reported. Results for the aggregate approach are based on [3].
Except for a few cases (36 nodes with MH = 6, 49 nodes with
MH = 5, and 64 nodes with MH = 5) in which both methods
have comparable performance, the lexicographic approach
performs significantly better than the aggregate model. For
instances with up to 64 nodes, it finds optimal or near-optimal
solutions, being able to guarantee the optimality of the first two
steps, while the aggregate model shows, in some cases, much
larger gaps, thus providing worse information regarding the
actual quality of the solutions obtained. Not only the relative
gap is smaller for the lexicographic approach, but also better
solutions are obtained. For the largest instance, it finds a near-
optimal solution, characterized by a smaller number of hops
than the aggregate model, when MH = 5. When MH = 6,
even if the lexicographic approach has 23.5% gap, it finds
a significantly better solution with 8 active nodes and 506
hops compared to the 18 nodes and 607 hops required by the
aggregate model.

V. CONCLUSIONS

A lexicographic approach is proposed to solve a multi-
objective optimization problem, aiming at achieving scalabil-
ity in optimal transport network design. The multi-objective
problem is divided into three single-objective steps which are

analyzed in terms of execution time and accuracy. Compared
to a previously defined aggregate model, the lexicographic
approach shows much better performance and accuracy when
applied to large networks: it allows to calculate the optimal (or
near-optimal) solution in a few tens of seconds for the most
relevant objectives, also in those situations that the aggregate
model was not able to solve. The main bottleneck of the
approach is represented by port optimization, which is anyway
assumed as the lowest priority objective. In addition, an in-
depth understanding of the optimization procedure has been
achieved that can be applied for future development with
additional constraints in slice automation perspective.
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