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Abstract—We investigate classifying hardware failures in mi-
crowave networks via Machine Learning (ML). Although ML-
based approaches excel in this task, they usually provide only
hard failure predictions without guarantees on their reliability,
i.e., on the probability of correct classification. Generally, accu-
mulating data for longer time horizons increases the model’s
predictive accuracy. Therefore, in real-world applications, a
trade-off arises between two contrasting objectives: i) ensuring
high reliability for each classified observation, and ii) collecting
the minimal amount of data to provide a reliable prediction. To
address this problem, we formulate hardware failure-cause iden-
tification as an As-Soon-As-Possible (ASAP) selective classification
problem where data streams are sequentially provided to an ML
classifier, which outputs a prediction as soon as the probability
of correct classification exceeds a user-specified threshold. To this
end, we leverage Inductive and Cross Venn-Abers Predictors to
transform heuristic probability estimates from any ML model
into rigorous predictive probabilities. Numerical results on a
real-world dataset show that our ASAP framework reduces
the time-to-predict by ∼8x compared to the state-of-the-art,
while ensuring a selective classification accuracy greater than
95%. The dataset utilized in this study is publicly available,
aiming to facilitate future investigations in failure management
for microwave networks.

Index Terms—Microwave networks, failure-cause identifica-
tion, As-Soon-As-Possible classification, Venn-Abers predictors

I. INTRODUCTION

M ICROWAVE networks are widely deployed as an al-
ternative technological solution to optical backbones,

especially to support backhauling of mobile traffic. Next-
generation (6G) communication services supported by such
networks are characterized by extreme availability require-
ments such as six 9s or even higher reliability [1]–[3]. There-
fore, prompt failure management represents a key factor for the
success of microwave networks in the 6G ecosystem. A quick
and reliable hardware failure-cause identification, as well as
precise discrimination of faulty devices, are of paramount
importance, as the countermeasures adopted by network oper-
ators to address network failures (e.g., whether to reconfigure,
repair, or even substitute a network device) strongly depend
on these two factors. In this context, early hardware failure
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Fig. 1. (a) Aggregate prediction vs. (b) As-Soon-As-Possible prediction.
Aggregate prediction collects network telemetry for a fixed-size observation
window, and then feeds it to an ML-based failure classifier. In contrast,
As-Soon-As-Possible prediction returns a failure prediction as soon as the
probability of correct classification exceeds a user-specified threshold 1− α.

detection and cause identification not only helps in lowering
mean-time-to-repair (MTTR) but also allows effective service
maintenance at a higher level, e.g., achieved by rerouting
traffic from a malfunctioning link towards an operating one
while link troubleshooting and repairing operations take place.

Current hardware failure classification approaches are based
on observing network parameters (e.g., transmitted/received
power measures, configured modulation format, and other
links settings) and equipment alarms retrieved by a Network
Management System (NMS). To output a failure diagnosis and
hence devise an appropriate mitigation strategy, operators rely
on knowledgeable domain experts, who typically observe and
analyze the retrieved information case by case. Due to the
increased complexity of modern microwave networks and the
large volumes of data that need to be analyzed by domain
experts to extract valuable information on failure causes, there
is an urgent need to automate the failure management process.
To this end, Artificial Intelligence (AI) and Machine Learning
(ML) are key enablers, as shown by the large amounts of
studies that recently appeared in literature [4]–[8].

However, although AI/ML models achieve satisfactory pre-
dictive performance in hardware failure-cause classification,
obtaining a reliable model that provides an uncertainty mea-
sure of its outputs is crucial for real deployments, as it
allows operators to make informed decisions on how to
handle failures properly. To reach this objective, we leverage
Uncertainty Quantification (UQ) in ML models, specifically
Inductive and Cross Venn-Abers predictors [9], a family of
probabilistic predictors with formal validity guarantees closely
related to the field of Conformal Prediction [10]. We leverage
Venn-Abers predictors to develop ML-based hardware failure
classifiers that output not only the most likely root cause
of a given hardware failure but also the probability that
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the prediction is correct. This additional information on the
predictive uncertainty can be exploited by domain experts to
properly gauge the risk of making decisions based on the ML
model’s outputs.

Fig. 1 shows a state-of-the-art solution based on Aggregate
prediction and our proposed solution based on As-Soon-As-
Possible prediction, aiming to make a prediction as-soon-as-
possible, once the required statistical guarantees are met. Prior
works that perform Aggregate prediction [11], [12] collect
fixed-size 15-minute windows of equipment alarms and feed
the data to an ML classifier for hardware failure-cause pre-
diction. Conversely, As-Soon-As-Possible prediction considers
one-second telemetry granularity of equipment alarms, and
feeds the data to an ML classifier that makes a failure-cause
classification only if a statistical guarantee is met. In case not,
new data from the next observation second is queried. The
process is repeated until the statistical guarantee is met.

Intuitively, a reliable prediction, i.e., failure-cause classifi-
cation with low uncertainty, can be obtained after a sufficient
amount of information (e.g., a data stream including infor-
mation on the status of multiple equipment alarms) has been
collected and fed to the AI/ML model. However, this is in
contrast with the ideal goal of As-Soon-As-Possible (ASAP)
prediction, where an operator wishes to react to failures as
soon as they occur or, more realistically, with a minimal
amount of information (and hence, after a minimal amount of
time) sufficient to obtain a reliable prediction. As a motivating
example, we quantify the performance gap between classifying
a hardware failure at the first second and classifying at the end
of a 15-minute window on our alarms dataset (described in
detail in Section III). Considering a state-of-the-art XGBoost
[13] model, failure classification at the first second and at the
end of the 15-minute window result in cross-validated accu-
racy of 88%± 2% and 96%± 2%, respectively. We conclude
that, though the first-second classification already yields a very
good performance, the gap with the 15-minute classification
is practically significant. In particular, in the context of failure
management, it is paramount to achieve near-perfect failure
classification, as predicting the wrong failure cause may result
in choosing inappropriate or dangerous mitigation strategies.

Therefore, the research question we aim to address in this
paper is: Can we autonomously return a maximally accurate
hardware failure-cause prediction in the least amount of time?

To solve the above problem, we propose an ML-based
hardware failure-cause classification framework that returns
a prediction as soon as the probability of correct classifica-
tion is greater or equal to a user-specified threshold (e.g.,
95% or 99%). In other words, our proposed framework can
provide failure-cause predictions that are both timely and
highly reliable. Compared to our prior work [14], the main
novelties proposed in this paper can be summarized as follows:
1) we explicitly address a reliability aspect of probabilis-
tic prediction, while our prior work only considered hard
predictions, and 2) we redefine the problem by considering
ASAP failure-cause classification at one-second granularity,
while in the prior work, we considered fixed-size observation
windows to forecast alarm states and corresponding failure
causes without any statistical guarantee. Our key contributions

are summarized as follows:
• We introduce a new dataset for ML-based failure man-

agement, comprising alarms and ground-truth annotations
indicating failure causes in microwave links from a real-
world microwave network, and make it publicly available
to the research community.1 (Section III)

• We propose a principled methodology for ML-based As-
Soon-As-Possible hardware failure-cause classification in
microwave networks, such that the ML model retrieves
from the network the minimal amount of information
on device alarms to output a prediction only when its
probability of correct classification is at least above
a user-specified safety threshold. To achieve this, we
leverage Venn-Abers predictors, which offer theoretical
guarantees on predictive probabilities. (Section IV)

• We validate our approach against the current state-of-
the-art, illustrating that our approach consistently yields
better probabilistic predictions, thereby allowing for reli-
able selective classification. Furthermore, we explore and
discuss tunable performance trade-offs introduced by our
proposed methodology. (Section V)

II. RELATED WORK

The application of ML for failure detection and failure-
cause identification in telecommunication networks is receiv-
ing considerable attention, as it offers operators the ability to
take mitigation actions promptly [15]–[17]. In this section,
we discuss some recent literature utilizing ML for failure
management with a specific focus on microwave networks.

Prior works utilized ML for detecting failures due to trans-
mission parameter degradation or attenuation on microwave
links [18]–[20]. For instance, in [18], authors propose an ML-
based approach for continuously monitoring the performance
of a microwave link and detecting degradation due to natural
weather conditions, leveraging on performance measurements,
such as signal strength and signal-to-noise ratio, and weather
information. Another work [19] proposes an approach based
on Long Short-Term Memory (LSTM) and recurrent neural
networks to continuously predict rain-induced attenuation due
to weather conditions using past measurements. Similarly,
authors in [20] propose various ML-based approaches for real-
time analysis of the link’s performance and forecasting of rain-
induced attenuation leveraging historical data.

Other works have utilized data available from microwave
links to predict a broader set of failures. For instance, [21]
proposes supervised and semi-supervised learning approaches
for failure-cause identification leveraging link performance
data from a nationwide microwave network. Gathered data
measurements were aggregated in 15-minute intervals, and
ML techniques were employed to train models to identify six
categories of failure causes, achieving classification accuracy
up to 95%. In [22], authors focus on tackling the same problem
considering, in addition to the link’s performance measure-
ments, alarm data stemming from devices and data relative to
weather and terrain surrounding the microwave link. Authors
devise a deep learning-based method that achieves a 95%

1https://github.com/bonsai-lab-polimi/tnsm2024-asap-venn-abers
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classification accuracy. Authors in [23] introduce an anomaly
detection system that leverages both the link’s performance
data (signaling quality and transmission performance) and net-
work topology, while employing active learning techniques to
update the detection model continually. The performance data
is aggregated and sent to a network management system every
15 minutes, where it is later processed and used for inference.
Similarly, in [11], authors introduce an LSTM-based feature
fusion network designed to capture both spatial and temporal
features within microwave network by incorporating network
topology into the LSTM, in addition to links’ performance
data collected by probes every 15 minutes. Moreover, [12]
proposes an ML-based framework that combines eXplainable
AI techniques and uncertainty quantification to achieve reliable
and robust failure-cause identification. As data, the work
utilizes the link’s performance measurements aggregated in 15-
minute intervals. The work in [24] also examines the problem
of failure-cause identification in a scenario involving multiple
cooperating operators, i.e., where data is split among operators,
and where one operator possesses only partial knowledge of
failure causes during the training stage. The authors devised
a classification model based on Federated Learning (FL) to
train an ML model to detect six distinct failure causes while
adhering to privacy constraints.

While these works rely on accumulating telemetry statistics
to subsequently perform failure-cause detection, our proposed
framework aims to bridge the gap between prediction and
telemetry accumulation, where predictions and telemetry ac-
cumulation occur concurrently, allowing the ML models to
output predictions (in our case, indicating the hardware failure-
cause in a microwave link) as soon as they reach a mature
stage, referred to as As-Soon-As-Possible prediction. By in-
tertwining ML model inference and performance assessment
with ongoing telemetry and data collection, our proposed
frameworks strive to offer more robust, timely, and actionable
failure identification and mitigation.

Finally, the methodological framework proposed in this
paper closely resembles ASAP in-network traffic classification
in pForest [25], from which we adopt the terminology. Our
work brings two major improvements compared to pFor-
est. First, we propose integrating Venn-Abers calibration in
the inference phase to provide formal guarantees on the
probability of correct classification, while pForest does not
provide any such guarantee. Second, we do not make any
assumption on the underlying ML model, namely, we do not
assume a specific model architecture, nor a minimum level of
performance (e.g., classification accuracy) in generalization,
while pForest is limited to Random Forests and assumes that
the model can deliver a minimum level of performance. Our
goal is, therefore, to provide the network manager with an
accurate decision-making tool in the form of valid predictive
probabilities, regardless of how good or bad the underlying
ML model might be.

III. BACKGROUND ON MICROWAVE NETWORKS

In this Section, we provide a brief overview of the main
components of a microwave network and introduce our dataset
of hardware failures in microwave networks.
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Fig. 2. Basic components of a microwave link.
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Fig. 3. Illustrative representation of the SIAE-Microelettronica hardware
failure dataset for one microwave link in two 15-minute windows.

A. Microwave link

Fig. 2 shows the basic structure of a bidirectional microwave
link, highlighting the transmitting end (TX/RX site) and the
receiving end (RX/TX site). Each end is composed of three
main elements:

1) Microwave Radio: generates a signal at the TX/RX
site and receives the signal at the RX/TX site. In this
work, we consider a split-mount placement, where the
electronic devices are distributed between an outdoor
unit (ODU) and an indoor unit (IDU). The IDU contains
the power unit and electronic components like modems,
converters, and the system’s interface. The power unit in
the IDU provides the necessary electrical power to the
entire system, including the ODU. The ODU is mounted
outside from the antenna and is powered via the cable
from the IDU.

2) Transmission Line: connects the microwave radio to
the directional antenna through a coaxial cable or a
waveguide. The Intermediate Frequency cable (IF cable)
connects the IDU and the ODU in a split-mount system.
The IF cable is responsible for non-negligible signal
losses, depending on signal frequency, and may strongly
affect the quality of transmission in case of physical
medium deterioration.

3) Microwave Antenna: is directional, usually parabolic-
shaped, and characterized by its gain, size, and direc-
tivity functions. In split-mount systems, the antenna is
co-located with the ODU.

We focus on hardware failures that can impact microwave
equipment of a microwave link.2 In particular, 1) hardware
failure of the IDU unit (IDU failure), 2) hardware failure
of the ODU unit (ODU failure), 3) hardware failure of the

2From the three components of the microwave link, we consider hardware
failures of the microwave radio and the transmission line. However, we do
not consider hardware failures of the antenna.



4

transmission line (IF cable failure), and 4) hardware failure of
the power unit (power failure). In the following, we provide a
detailed description of the real-world hardware failure dataset
used in our study.

B. Microwave hardware failure bit-sequence dataset

The unavailability of a microwave link is defined in ITU-T
Recommendations G.826 and G.828 [26] in terms of Unavail-
ability Seconds (UAS), i.e., the number of seconds over which
the number of errored bits exceeds a given threshold. UAS may
be caused by several phenomena, such as propagation failures
due to e.g., atmospheric fading, or hardware failures due to
equipment malfunction.

We leverage a real-world dataset of hardware failures from
108 microwave links from a microwave network provided by
SIAE Microelettronica [27]. Alarms from each microwave link
are collected at one second granularity in windows of 15
minutes, with a binary indicator “1” if an alarm signal is ON
and a binary indicator “0” if an alarm signal is OFF. Hence,
constructing the alarm bit-sequence dataset. In addition, from
the alarm bit sequence dataset, we construct a 15-minute
window dataset by computing the number of seconds an alarm
signal is ON in non-overlapping 15-minute windows. For each
alarm signal, in a 15-minute window, we get a number ranging
between 0 and 900, representing the number of seconds the
alarm signal was ON during the 15-minute window.3

Our dataset corresponds to 861 disjoint 15-minute win-
dow observations of 164 alarm signals collected from 108
microwave links during a time period across two years.
Alarm signals are triggered based on the output of multiple
telemetry sources installed in the hardware equipment, such as
temperature and power sensors, or status monitors for multiple
hardware and software sub-components.

The dataset comprises four hardware failure classes: 1) IDU
failure (e.g., failure of some electronic IDU component, or
a temperature issue due to improper equipment installation
and/or a worn fan), 2) ODU failure (similar to IDU), 3)
Cable failure (e.g., damaged connectors), and 4) Power failure
(e.g., due a power outage and/or a battery problem). Each
failure type is identified based on alarms issued by the radio
equipment, serving as input features to the ML-based classifier.
The frequency of each failure class in each 15-minute window
is as follows: 1) IDU failure: 129 observations, 2) ODU failure:
493 observations, 3) Cable failure: 75 observations, 4) Power
failure: 164 observations.

Fig. 3 shows an illustrative example of the hardware failure
dataset for one microwave link. For each link, we consider a
one-second granularity timestamp observation for each of the
164 alarm signals (A1 to A164) in 15-minute non-overlapping
windows. Additionally, we report the cumulative sum of the
number of seconds an alarm signal is ON during the 15-minute

3A value “0” means the alarm signal is OFF during the whole window,
while a value “900” means the alarm signal is ON during the whole window
duration. Any number x: 0 < x < 900, means the alarm signal is ON for x
seconds during the whole window duration. However, this does not imply the
alarm signal is ON for x seconds sequentially, as, in practice, an alarm signal
may be ON and OFF in different sections of the 15-minute window.

window, for each alarm signal (
∑

(A1) to
∑

(A164)). Finally,
we report the ground truth label of the hardware failure-cause.

We first reconstruct the bit-sequence dataset measured every
second within the 15-minute telemetry collection window.
Then, we construct expanding-window features starting from
the beginning of each 15-minute window. Each expanding-
window feature represents the number of seconds the corre-
sponding alarm signal was ON at time t = 1, . . . , 900 within
the 15-minute window. We leverage this dataset to simulate a
streaming scenario where telemetry data is aggregated and fed
to an ML model for failure-cause classification in real-time.
Note that the 15-minute dataset is a subset of this new dataset.
In summary, two datasets are used in our study are:

1) Expanding window dataset for the As-Soon-As-Possible
prediction. Each observation represents the total number
of seconds the alarm signals were ON at a certain time
within the 15-minute observation window.

2) 15-minute window dataset for Aggregate prediction.
Each observation aggregates bit sequences in non-
overlapping windows of 15 minutes, counting for each
window the number of seconds each alarm signal is ON.

IV. AS-SOON-AS-POSSIBLE FAILURE-CAUSE
IDENTIFICATION IN MICROWAVE NETWORKS

We now focus on the problem of failure-cause classification
through an ML model, given a stream of microwave equipment
alarms. While in this paper we utilize a microwave hardware
failure dataset, our methodology can be applied to any dataset
of streamed measurements, such as the ones employed in prior
work on classifying propagation failures [12]. We first present
our proposed As-Soon-As-Possible classification framework,
and then discuss its methodological aspects in detail.

A. Reference scenario and problem statement

Our reference scenario is as follows: when a non-zero UAS
is detected in a radio link, the alarm bit sequences are streamed
to an ML model for inference. In particular, as the stream
progresses, we accumulate statistics on the alarm status to
construct more accurate representations of the alarm. In our
case, we consider computing the total number of seconds each
alarm signal is ON. The bit sequences are then fed to an ML
model trained for failure-cause classification.

Fig. 4 illustrates and compares a high-level overview of
two ML-based methodologies for failure-cause classification,
namely, (a) Aggregate prediction, which is the current state-
of-the-art, and (b) As-Soon-As-Possible prediction.

Aggregate prediction (Fig. 4, top) consists of accumulating
telemetry data for a fixed-size window (in our case, 15
minutes). For failure management in microwave networks,
the above methodology displayed remarkable accuracy (above
95% in past literature [21]). However, there are two main
drawbacks to this approach. First, aggregate failure classi-
fication always requires 15-minute windows, irrespective of
the “difficulty” in classifying an observation. Since choos-
ing a mitigation strategy depends on proper failure-cause
classification, the aggregate window strategy introduces an
unnecessary bottleneck. Second, and more critical, there are
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Fig. 4. Aggregate vs. As-Soon-As-Possible (ASAP) failure-cause identification in microwave networks. The aggregate approach collects telemetry data for
a fixed-size temporal window (e.g., 15 minutes) and then feeds the extracted features to an ML model for classification. ASAP prediction feeds to the ML
model expanding subwindows of telemetry data as soon as they are collected and leverages Uncertainty Quantification (UQ) to return a prediction only when
the probability of correct classification is greater than a user-specified safety threshold.

no formal guarantees of the correctness of the prediction.
Even if the model displays a test accuracy of 95% (i.e.,
it performs generally correct class assignment), we have no
general guarantees on the probability of correct predictions on
new individual samples. In other words, the aggregate method
does not quantify how reliable the model’s predictions are.

To solve the above problems, we propose leveraging As-
Soon-As-Possible (ASAP) prediction (Fig. 4, bottom). In the
ASAP prediction framework, alarms are fed to the ML model
as soon as they are collected. By leveraging principled un-
certainty quantification via Venn-Abers predictors, the ML
classifier will produce a prediction as soon as the probability
of correct classification is greater or equal to a user-specified
threshold. The advantages of ASAP prediction over aggregate
prediction lie in reducing the average time-to-predict (hence,
the time for deploying the appropriate mitigation strategy)
without compromising on the predictive accuracy. Moreover,
by providing a soft probability instead of a hard class as-
signment, we allow the network operator to make informed
decisions based on predictive uncertainty.

Referring to Fig. 4 (b), As-Soon-As-Possible prediction
shows an example of accumulating the number of seconds
each alarm is ON to make a classification decision with high
confidence. At a timestamp t (e.g., t = 2s), the ML classifier
utilizes the information from t-1 previous timestamps (e.g.,
t = 1s). In line with this, we aim to deploy a model that
returns accurate predictions as soon as possible. This problem
can be formally stated as selective classification: the model
should return a prediction only if the probability of correct
classification is greater or equal to a user-specified safety
threshold 1 − α; otherwise, it will abstain. In other words,
the classifier should differentiate between easy-to-classify and
hard-to-classify hardware failures and decide accordingly. For
example, predictions for easy-to-classify failures may be re-
turned at the first second (t = 1s). In contrast, for hard-to-
classify failures, the model might abstain from predicting until

several hundreds of seconds of alarms have been observed
(e.g., t = 900s in case of the complete 15-minute window).

We remark that, when a user enforces a safety threshold
(e.g., 95% probability of correct classification), the model
may not guarantee that level of certainty for every example
at the end of the 900s monitoring window. In other words, in
the case of particularly hard-to-classify examples, the model
will abstain from predicting. We refer to these samples as
rejected samples. Rejected samples might be, for instance, sent
to domain experts for a more detailed inspection [12]. The
rejection rate ultimately depends on the predictive power of
the ML model: a highly accurate model implies lower rejection
rates, and vice-versa. In this context, we emphasize that our
framework enforces safety constraints without assumptions
about the underlying ML model’s performance.

In the following discussion, we assume that the ML classi-
fier is a scoring classifier that can output a heuristic measure
of confidence on its predictions, e.g., in the form of normalized
scores in [0, 1] for each output class. Many popular ML models
are scoring classifiers: for instance, artificial neural networks
output softmax probabilities, while decision trees output the
class frequency in the leaf nodes. From this assumption, we
discuss two different strategies for implementing ASAP failure
prediction. First, we discuss the baseline strategy of threshold-
ing the class scores, which is a straightforward extension of
the current state-of-the-art, and we highlight its fundamental
limitations. We then propose leveraging Venn-Abers predictors
to overcome these limitations.

B. ASAP failure classification via score thresholding

A straightforward solution for ASAP failure classification is
to threshold the predicted class scores, returning a prediction
only if the score associated with the most likely class is greater
than 1 − α. Formally, at each time-instant t ∈ [1, 900] in the
alarm collection window, we return a class prediction ŷt given
features xt as follows:
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Fig. 5. Reliability diagram of an XGBoost model on the hardware failures
dataset. The XGBoost model is overconfident for high-confidence predictions.

ŷt =

{
argmax f̂(xt) if max f̂(xt) ≥ 1− α,

∅ otherwise,
(1)

where ∅ stands for “no prediction”. Unfortunately, the classi-
fication scores produced by an ML model are generally not
valid probabilities in the statistical sense [28], [29]. Formally,
we say that a model is calibrated if [29]:

p(cj | pcj ) = pcj ∀pcj ∈ [0, 1], (2)

where pcj is the predicted probability for class cj , and
p(cj | pcj ) is the probability of the ground-truth being cj
if the corresponding predicted probability is pcj . For example,
in a perfectly calibrated model, a class prediction with a score
equal to 0.95 has a 95% chance of being correct. Generally, a
trained ML model is not calibrated out of the box [28], [29].
As an illustrative example, Fig. 5 shows the reliability diagram
of an XGBoost classifier in an 80-20 train-test split of our
15-minute window dataset. This diagram displays the mean
predicted probability versus the empirical frequency of correct
classification in ten equally-spaced bins between [0, 1]. An
ideal, perfectly calibrated model would display points located
on the diagonal of the diagram. In our case, we observe that
the XGBoost model is, on average, not well-calibrated. For
example, for a mean predicted probability of 86%, the actual
frequency of correct classifications is only 69%. We conclude
that, though the model is very skilled at class assignment
(> 95% test set accuracy), it is overconfident when outputting
high-confidence predictions. In other words, the high predic-
tive power of the current state-of-the-art does not guarantee
probability calibration, which is highly undesirable for high-
risk failure management applications. Though this illustrative
example considers one specific split and model class, in
general, we have no control on the default calibration of an ML
model. We, therefore, need more sophisticated methodologies
for producing reliable, high-confidence predictions that do not
assume the model to be calibrated by default.

We consider the problem of probability calibration, that is,
how to transform heuristic uncertainty estimates of an ML
model into valid probabilities. Popular classical approaches
for probability calibration are Platt scaling [30] and isotonic
regression [31]. Unfortunately, the correctness of these ap-
proaches depends on assumptions that are unrealistic in many
practical scenarios. In particular, Platt scaling assumes that the
reliability diagram of the ML classifier to be calibrated has a
sigmoidal shape, while isotonic regression assumes a perfectly

monotonic relationship between the predicted scores and the
true probabilities. In summary, classical approaches like Platt
scaling and isotonic regression can be regarded as heuristics
with no formal validity guarantees.

C. ASAP failure classification via Venn-Abers predictors

An alternative approach emerging as a promising solution to
overcome the shortcomings of the aforementioned approaches
are Venn-Abers predictors (VAPs) [9], [10]. VAPs are a
methodological framework for turning heuristic probability
estimates from an arbitrary ML model into rigorous probability
estimates with theoretical guarantees on calibration. The only
assumption is the availability of a calibration dataset Dcal =
{(xi, yi)}ncal

i=1, where x and y indicate features and ground-
truth annotations, respectively. The calibration set represents
“fresh” i.i.d. data not used during training. VAPs leverage the
ML model’s predictive performance on the calibration set to
turn class scores into well-calibrated probabilities. VAPs are,
in principle, defined for binary classification problems. We first
briefly discuss the algorithm for the binary classification case
and then extend it to the multiclass case.

Binary VAPs. We consider two variants of VAPs, namely
Inductive Venn-Abers predictors (IVAPs) and Cross Venn-
Abers (CVAPs) predictors. IVAPs provide formal theoretical
guarantees on calibration. CVAPs are derived from IVAPs,
exhibiting stronger empirical performance on average while
dropping theoretical guarantees on calibration.

It can be demonstrated that, unfortunately, it is impossible
to learn an optimal probabilistic classifier from a finite-
size dataset [32], [33]. VAPs overcome this challenge by a)
producing two probabilities instead of one, and b) restricting
the optimality guarentees to calibration.

Formally, VAPs are multiprobabilistic predictors, that is, for
each test example, they produce two probabilities (p0, p1) for
the sample to be assigned to the positive class. VAPs guarantee
that either p0 or p1 will be perfectly calibrated, according to
the definition in Eq. (2). The key intuition is as follows: if p0
and p1 are close to each other, and one of them is calibrated,
then we can expect that their “average” will be also calibrated.

Indeed, for decision-making purposes, we need one single
probability value. Unfortunately, it is generally impossible to
know which one among p0 or p1 is the “right” choice. To
solve this problem, p0 and p1 are merged into a single value p
that minimizes the error with respect to a proper scoring rule,
e.g., the log-loss or the Brier score. We now discuss each of
the above steps in more detail.

Algorithm 1 and Algorithm 2 illustrate the procedure for
building IVAPs and CVAPs, respectively. IVAPs split the
training set Dtrain into a “proper” training set D′

train and a
calibration set Dcal. First, we fit the ML classifier to the proper
training set. Then, we fit two Isotonic Regression algorithms
(f0 and f1 in Algorithm 1) to the prediction scores in the
calibration set and the predicted score on the test sample.
IVAPs output two probability values, each one assuming that
the ground-truth value for the test sample is either 0 or 1. The
intuition is that, since the ground truth for the test sample is
either 0 or 1, one of the two probabilities will be calibrated.
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Algorithm 1 Inductive Venn-Abers Predictor (IVAP)
Require: Scoring ML classifier f (e.g., XGBoost), proper

training dataset D′
train = {(xi, yi)}ntrain

i=1 , calibration dataset
Dcal = {(xj , yj)}ncal

j=1, test example xtest

1: f̂ ← f.fit(Dtrain)
2: {si}ncal

i=1 ← {f̂(xj)}ncal
i=1 // compute calibration scores

3: stest ← f̂(xtest) // compute test score
4: f0 ← Isotonic.fit((s0, y0), . . . , (sncal , yncal), (stest, 0))
5: f1 ← Isotonic.fit((s0, y0), . . . , (sncal , yncal), (stest, 1))
6: (p0, p1)← (f0(stest), f1(stest))
7: return (p0, p1)

Algorithm 2 Cross Venn-Abers Predictor (CVAP)
Require: Scoring ML classifier f , training dataset Dtrain =
{(xi, yi)}ntrain

i=1 , test example xtest, number of folds k
1: Split the training set Dtrain into k folds D1, . . . ,Dk

2: for i← 1 to k do
3: (pi0, p

i
1)← IVAP(f,Dtrain \ Di,Di, xtest)

4: end for
5: return gmean(p1) / (gmean(1− p0) + gmean(p1))

Note that p0 and p1 are not complementary, i.e., p1 ̸= 1−p0. In
fact, it always holds that p0 < p1. In practice, for reasonably-
sized datasets, p0 and p1 will have similar values [10]. Because
of this, if one of the two is perfectly calibrated, we can expect
that their “average” will be well-calibrated. As such, we merge
the two probabilities p0 and p1 into a single value, as follows:

p =
p1

1− p0 + p1
. (3)

Choosing this value of p yields log-minimax IVAPs, that is,
it minimizes the regret of using p instead of the appropriate
p0 or p1 over the log-loss. We point the reader to a complete
proof of the calibration of IVAPs [34] and the log-minimax
rule for deriving p [9].

CVAPs are an extension of IVAPs, dropping the theoretical
guarantees on calibration in favor of a stronger empirical
performance [9]. The algorithm splits the training set into k
non-overlapping folds and applies IVAP k times, each time
considering one fold as the calibration set and the remainder
folds as the proper training set. This procedure results in
two vectors (p0,p1), where (pi0, p

i
1) are the outputs of IVAP

considering the i-th fold as calibration set. We then merge the
vectors into a single probability value, as follows:

p =
gmean(p1)

gmean(1− p0) + gmean(p1)
, (4)

where gmean(·) indicates the geometric mean. Note that, Eq.
(3) is a special case of Eq. (4) when k = 1. As for Eq. (3), it
can be demonstrated that choosing p as in Eq. (4) minimizes
the regret over the log-loss, i.e., is log-minimax [9].

Multiclass VAPs. So far, we have discussed VAPs in the
binary classification case. We now outline different techniques
for generalizing these algorithms to the multiclass case.

A first approach consists of treating the multiclass problem
into multiple one-versus-all (binary) classification problems,
and constructing a VAP for each class [35]. However, in our

specific application scenario (selective classification), we are
not interested in calibrating every predicted probability, but
only the probability of the predicted class. To this end, we fol-
low the guidelines of prior work [36] and apply VAPs only for
calibrating the probability that the predicted class is correct. To
do so, we relabel each instance in the calibration set to 1 if the
ground-truth class is equal to the predicted class of the model,
and 0 otherwise. Formally, with reference to Algorithms 1
and 2, after splitting the data in training and calibration set,
we construct a new calibration set Dbin

cal = {(xi, y
bin
i )}ncal

i=1 with
binary labels, as follows:

ybin
i =

{
1 if yi = argmax f̂(xi),

0 otherwise.
(5)

The remainder of the IVAP and CVAP algorithms can be
executed without further modifications. The final result is a
VAP that calibrates the probability of correct classification,
which can then be leveraged for ASAP classification.

Computational complexity of VAPs: we remark that build-
ing IVAPs and CVAPs as per Algorithms 1 and 2 appears
computationally onerous, as it requires fitting two isotonic
regression model for each test example. However, we note
that the two isotonic regression models are fitted to the
calibration scores plus only one other example, namely, the
test example. One can leverage this property to reduce the
computational complexity of the calibration procedure (lines
4-6 of Algorithm 1) to O(ncal log(ncal)), where ncal is the
number of examples in the calibration set. The remainder of
the total complexity is dominated by model training (line 1
of Algorithm 1), which is performed only once and in an
offline phase. This makes the application of VAPs feasible for
our application scenario, where the ML model must supply
a prediction every second. Deriving the efficient algorithm is
non-trivial, therefore, we omit the proof for brevity. We refer
the readers to a detailed derivation [9] and a reference Python
implementation of efficient IVAPs [37].

V. ILLUSTRATIVE NUMERICAL RESULTS

We now discuss illustrative numerical results highlighting
the practical advantages brought by our ASAP classifier com-
pared to the state-of-the-art. In particular, we empirically show
that our ASAP classifier can:

1) Satisfy (on average over 10-fold cross-validation splits)
a user-specified high probability of correct classification
(95% or 99%), while rejecting a reasonable number of
test samples (on average less than 10% for achieving
> 95% selective accuracy)

2) Achieve ∼8x speedups on the mean time-to-predict
compared to a state-of-the-art failure-cause classification
aggregate strategy operating on 15-minute windows,
while maintaining the same level of accuracy (> 95%)

We consider a single XGBoost model with default config-
uration as an ML classifier [13]. This is because gradient-
boosted tree models are the current state-of-the-art in ML for
tabular data [38], [39]. We borrow from VennABERS.py [37]
for implementing IVAPs and CVAPs. Results are aggregated
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TABLE I
PROBABILISTIC PREDICTION METRICS FOR UNCALIBRATED, IVAP AND
CVAP CLASSIFIERS. WE REPORT MEAN AND STANDARD DEVIATIONS

OVER 10-FOLD CROSS-VALIDATION.

Metric Uncalibrated IVAP CVAP

Log-loss 0.21± 0.06 0.14± 0.04 0.13± 0.03
Brier score 0.09± 0.02 0.04± 0.01 0.039± 0.009
ECE 0.028± 0.015 0.025± 0.012 0.023± 0.009

over 10-fold cross-validation. To avoid data leakage, we per-
form train-test splits over disjoint 15-minute windows.

As a baseline algorithm, we consider an Uncalibrated ASAP
classifier trained on the expanding-window dataset that thresh-
olds the XGBoost class scores without applying any post-
processing (Section IV-B). Note that, while CVAP and IVAP
require holding out a portion of the training set for calibration,
we train the uncalibrated classifier on the whole training set for
a fair comparison. For IVAP, we hold out 20% of the training
dataset for calibration. For CVAP, we consider splitting the
training dataset into k = 5 folds.

We first quantitatively evaluate whether or not IVAPs and
CVAPs provide better probabilistic predictions compared to
the Uncalibrated model. We report three metrics for proba-
bilistic prediction: i) log-loss, ii) Brier score, and iii) Expected
Calibration Error (ECE). The log-loss is defined as follows:

Log-loss =

{
− log(p) if correct,
− log(1− p) otherwise,

(6)

where p is the probability associated to the predicted class.
The Brier score is defined as follows:

Brier score =

{
(p− 1)2 if correct,
((1− p)− 1)2 otherwise.

(7)

The Brier score can be interpreted as the mean squared error
applied to predicted probabilities. We remark that both the
log-loss and the Brier score are strictly proper scoring rules
[40], that is, lower scores indicate a better approximation
of the true data distribution. Finally, ECE is defined as the
weighted average of the absolute difference between the mean
of the predicted probabilities (mop) and the fraction of correct
predictions (foc) in M = 10 equally-spaced bins (the same
computation that resulted in Fig. 5), as follows:

ECE =

M∑
i=1

|Bi|
ntest
|foc(Bi)−mop(Bi)|. (8)

We underline that, unlike the log-loss and the Brier score,
the ECE is not a proper scoring rule, that is, lower ECE
does not generally imply better probabilistic predictions. As a
simple counterexample, a classifier always predicting the class
frequencies in the training set will achieve near-zero ECE,
despite being useless for making predictions. Still, we report
the metric for its useful intuitive interpretation.

Table I illustrates the average log-loss, Brier score, and ECE
of the Uncalibrated XGBoost model, IVAP, and CVAP. We
observe that VAPs achieve better values for all the considered
metrics. In particular, since VAPs achieve better log-loss and
Brier score, we can conclude that they can provide better
probabilistic predictions than the Uncalibrated model.

Uncalibrated IVAP CVAP
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Fig. 6. Selective accuracy of Uncalibrated, IVAP and CVAP for thresholds
95%, 99% on the probability of correct classification. We report means and
standard deviations over 10-fold cross-validation.

TABLE II
SELECTIVE ACCURACY AND REJECTION RATIOS OF UNCALIBRATED,

IVAP AND CVAP FOR ASAP CLASSIFICATION. WE REPORT MEAN AND
STANDARD DEVIATIONS OVER 10-FOLD CROSS-VALIDATION.

Metric Uncalibrated IVAP CVAP

Target: > 0.95 selective accuracy
Selective accuracy 0.954± 0.033 0.981± 0.019 0.984± 0.019
Rejection ratio 0.3%± 0.5% 5%± 3% 8%± 4%

Target: > 0.99 selective accuracy
Selective accuracy 0.972± 0.026 0.984± 0.018 0.994± 0.011
Rejection ratio 1.0%± 0.9% 11%± 6% 18%± 6%

We now evaluate our approach in terms of selective ac-
curacy, that is, the frequency of correct classification of the
accepted predictions. Fig. 6 illustrates the selective accuracy
of the ASAP model under error rate constraints of α = 0.05
and α = 0.01 (i.e., 95% and 99% accuracy, respectively). For
the 95% case, we observe that even though the uncalibrated
model delivers, on average, a 95% selective accuracy, it does
not perform consistently among different splits. Indeed, the
minimum selective accuracy is below 91%, illustrating that the
uncalibrated model tends to be overconfident. From a failure
management perspective, this can result in underestimating the
risk associated with accepting wrong failure classifications,
which may have a devastating impact if said classifications
are leveraged for choosing a mitigation strategy. Conversely,
both IVAP and CVAP deliver a selective accuracy always
greater than 0.95%. For the 99% case, we observe that both
the uncalibrated model and IVAP do not meet the target and
deliver an accuracy less than 99%. In contrast, CVAP delivers
an average selective accuracy above 99% with relatively low
variance across the splits. This is a remarkable result, as
our training dataset is relatively small, and we are querying
the extreme tail of the predictive distribution. We draw two
main conclusions from this first analysis. First, calibrating
via either IVAP or CVAP consistently improves the selective
accuracy over the uncalibrated model. Second, consistent with
prior findings [9], we conclude that although CVAPs drop the
theoretical guarantees of IVAPs, they provide better empirical
performance. From the point of view of network management,
the model’s predictions provided by our framework are highly
reliable for supporting decision-making.

We complement the comparisons in Fig. 6 with Table
II, which reports the percentage of rejected test samples
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Fig. 7. Time-to-predict CDFs for Uncalibrated, IVAP and CVAP for selective
classification under 95%, 99% probability of correct prediction.

for Uncalibrated, IVAP and CVAP for thresholds 95%, and
99% on the probability of correct classification. As expected,
the more stringent the threshold is, the greater the rejection
ratio. We observe that the uncalibrated model yields very
low rejection rates, a few percent on average; however, as
anticipated before, this comes at the price of a selective
accuracy that is, on average, lower than the safety threshold.
In contrast, IVAPs and CVAPs achieve a reasonable rejection
ratio (less than 10% and 20% of the total test samples for
95% and 99% selective accuracy, respectively) while providing
well-calibrated predictive probabilities. Finally, we comment
on why IVAPs and CVAPs yield rejection rates relatively
high compared to the uncalibrated model. Recall that the
underlying ML models in IVAP and CVAP are trained with
20% less training data than the uncalibrated model, as they
require a held-out calibration set. In other words, they have
less predictive power than the uncalibrated classifier. As such,
decisions must be more conservative to satisfy the selective
accuracy constraint, i.e., the model will reject more test
samples. Sacrificing predictive power in favor of calibration is
a trade-off that needs to be carefully evaluated when leveraging
VAPs. We argue that in a high-risk application such as
failure management, well-calibrated probabilistic predictions
are more useful for decision-making than hard predictions
with no uncertainty quantification. We expect rejection rates
to diminish in a scenario of relative data abundance (e.g.,
thousands of observations), where subtracting 20% of the
training set for calibration has a negligible impact on the
underlying ML model’s performance.

We now quantitatively assess the improvements brought
by our ASAP framework in terms of time-to-predict. Fig.
7 illustrates the cumulative distribution of the time elapsed
before the model outputs an (1 − α)-confident prediction for
α = 0.05 and α = 0.01. We see that, in general, most
predictions are provided already at the first second. This is
expected, since a baseline model operating only on one-second
telemetry already displayed accuracy close to 90%. Moreover,
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Fig. 8. Per-class time-to-predict CDFs of the CVAP classifier under a 95%
constraint on the probability of correct prediction.

we observe that the uncalibrated model outputs predictions on
average earlier than IVAP and CVAP. This, however, comes
at the price of an inferior selective accuracy, as previously
discussed for Fig. 6. Conversely, IVAPs and CVAPs can output
the majority of predictions in a few minutes, while respecting
the safety threshold. In particular, we observe that, for the 99%
case, the average time-to-predict increases compared to 95%.
This confirms that the model can indeed delay its prediction
until it matures a sufficient level of confidence to satisfy the
safety threshold. In particular, the CVAP classifier yields an
average time-to-predict equal to 101s and 119s for 95% and
99% accuracy targets, respectively. This grants a mean speedup
of 8.9x and 7.5x, respectively, compared to the state-of-the-
art aggregate classifier operating on 15-minute windows. We
conclude that our ASAP classifier can provide both reliable
and fast predictions.

Fig. 8 breaks down Fig. 7 on each individual failure class for
the CVAP classifier under a 95% selective accuracy constraint.
Note that, in this case, the y-axis reports the proportion of
test data per class. We observe that some failure classes
are predicted on average later than others. In particular, we
observe that, cable failures are predicted on average later than
all other failures. This is an expected result, considering the
class distribution in our dataset. Recall that the cable failure
is the least represented among all the failure classes with
only 75 observation (6.6x less than ODU failure, the most
represented class). It is a well-known result that, in scenarios
with class imbalance, a ML model will tend to favor the better-
represented classes [41], [42]. For this reason, we can expect
the predictions for the cable class to be, on average, more
uncertain compared to the other failure classes, resulting in a
longer time-to-predict on average. The information provided
by the above analysis can also be leveraged in a counterfactual
manner. For example, in case the ML model outputs several
consecutive predictions with high uncertainty, regardless the
output classes in these predictions, one can conclude that the
most likely class is among those that are typically predicted
later, e.g., cable failures, according to our analysis.

VI. CONCLUSION

In this paper, we introduced As-Soon-As-Possible (ASAP)
selective classification for hardware-failure-cause identifica-
tion in microwave networks. In contrast to the current state-
of-the-art, which leverages data collected in fixed-size mea-
surement windows, our ASAP classification framework is
designed to output a prediction as soon as the probability
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of correct classification exceeds a user-specified threshold.
To this end, we leverage recent advances in the field of
Venn-Abers predictors, which allows to turn any scoring
classifier into a well-calibrated probabilistic classifier. Overall,
our framework empowers the network manager with prompt
and reliable failure-cause predictions, reducing the time-to-
predict by ∼8x while ensuring a selective accuracy greater
than 95%. Future research directions include the investigation
of feature importance in determining the selective accuracy of
the prediction, i.e., to identify whether using or removing any
alarm from the features set has a positive or a negative impact
on the time-to-predict.
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