
Open Implementation of a Large Language Model Pipeline for
Automated Configuration of Software-Defined Optical Networks

Nicola Di Cicco*, Memedhe Ibrahimi, Sebastian Troia, Francesco Musumeci, Massimo Tornatore

Politecnico di Milano, Milan, Italy, *corresponding author: nicola.dicicco@polimi.it

Abstract We leverage LLMs to develop a natural-language interface to a software-defined optical
network testbed. Results show over 80% accuracy in translating human intent to the appropriate network
configurations. Our code is public. ©2024 The Author(s)

Introduction
Large Language Models (LLMs) have experienced
groundbreaking progress in recent years, achiev-
ing state-of-the-art performance in many natural
language and code generation tasks[1]. In partic-
ular, tremendous advances in open-source LLMs
make it possible to execute LLMs locally on com-
modity hardware while rivaling the performance
of state-of-the-art proprietary solutions such as
GPT-3.5[2],[3]. As such, LLMs hold vast untapped
potential for developing innovative LLM-powered
applications, with software-defined optical network-
ing standing as no exception.

In this paper, for the first time to the best of our
knowledge, we build and make public an LLM-
based application realizing a natural-language
interface to a software-defined optical-network
(SDON) testbed. The purpose of the application is
to translate open-ended natural language queries
from a user (e.g., “set up a lightpath”, or “mea-
sure the OSNR of a service”) into domain-specific
data models to be sent through an SDON, and to
provide feedback on the outcome of the user’s re-
quest. While our application targets specifically op-
erations on our testbed, the methodology and the
practical guidelines distilled in this paper are gen-
eralizable to any software-defined testbed expos-
ing a well-defined Northbound Interface (NBI). We
make our code (entirely built on open-source soft-
ware and open-source LLMs), data, and scripts to
reproduce experiments publicly available to foster
future research in this field.1

Building an LLM-based interface for automated
network configuration demands a specialized
knowledge of the inner workings of both LLMs
and the optical-network testbed. Here, we iden-
tify two fundamental challenges and anticipate our
proposed working solutions to solve them.

Challenge 1: the LLM has zero prior knowl-
edge about controlling any similar testbed.
This is a sensible assumption, since domain-
specific documentation of optical-network testbeds
is, in general, not publicly available on the Internet,
and hence cannot be present in the text corpora

1https://github.com/nicoladicicco/llm-orchestrator

used to train the LLM. We therefore face the chal-
lenge of how to efficiently inject new knowledge
into pre-trained LLMs.

Challenge 2: LLM outputs are not control-
lable (i.e., “hallucinations” occur). Regrettably,
LLMs are prone to producing non-factual outputs.
Though “prompt engineering” techniques (i.e., de-
signing task-specific inputs) can mitigate this phe-
nomenon, we have no guarantees that LLMs will
never hallucinate. When interacting with a testbed,
hallucinations can translate into malformed data
in the best case, and catastrophically destructive
actions in the worst case. For this reason, we
need to implement fail-safe mechanisms to avoid
undesired outcomes.

Teaching new skills to pre-trained LLMs
A first strategy for incorporating new knowledge
into an LLM is through fine-tuning via Supervised
Learning on a target training dataset. This has
two main limitations: 1) it requires costly GPUs
(though this need can be partially circumvented
with modern approximating algorithms[4],[5]), and
2), most importantly, it requires sizeable datasets
high-quality prompt-answer exemplars[4],[5], which
may be extremely time-consuming to collect, e.g.,
in the case of instructions for SDON configuration.

Hence, we decided to adopt a second strategy,
called in-context learning, i.e., all the informa-
tion relevant to solving the new task is provided
in the LLM’s prompt. The intuition is that LLMs,
being trained on colossal text corpora, become
capable of learning new skills from analogy at
runtime. One can think of prompting as a way
of “programming” LLMs. Moreover, even though
in-context learning is limited by the LLM’s context
window (i.e., its short-term memory), recent break-
throughs achieved context windows as long as
700.000 words[6]. However, even though in-context
learning is an exceptionally powerful and versatile
technique, naive prompting (e.g., “do X; context:
Y”) will result in sub-optimal outputs, mainly due
to hallucinations[7]. In the following, we outline
our proposed solutions to create valid outputs and
minimize hallucinations.

Constr.
LLM

Establish a
lightpath between

all node pairs
Planning [{"task" = "Lightpath",

"description" = "establish
a LP between A and B"},

{"task" = "Lightpath",
"description" = "establish
a LP between B and C"},

{"task" = "Lightpath",
"description" = "establish
a LP between A and C"}]

List of tasks
as JSON

Constr.
LLM

Execution

Data generation
(e.g., JSON, YAML)

Northbound interface

RESTConf SDN Controller

Southbound interface

Control
Plane

A B C

Error handling

Guaranteed to be
schema-compliant

Task generation

Network
Testbed

{
 "$schema": "https://json-
schema.org/draft/2020-
12/schema",
 "type": "array",
 "items": {
 "type": "object",
 "properties": {
 "task": {
 "type": "string",
 "enum":
["Lightpath", "Service",
"Measurement"]
 },
 "description": {
"type": "string" }
 },
 "required": ["type",
"description"]
 }
}

Example of a JSON schema

Fig. 1: System design of an LLM-based interface to a software-defined optical network testbed.

Designing an LLM-based interface for software-
defined optical networks

Our core idea is as follows: while we cannot guar-
antee that the LLM’s output will exactly realize
the user’s intent, we can guarantee that it will al-
ways be valid, i.e., well-formed, according to a
user-specified data model. To achieve this goal,
we leverage compositional learning[8]–[11], i.e., we
decompose “translating human intent in an ap-
propriate data structure” in three simpler tasks:
1) Planning, where an LLM translates human
intent into a list of tasks, 2) Execution, where
an LLM produces the appropriate data structure
for each task, and 3) Error handling, where an
LLM attempts to rectify easily-fixable errors with
minimal human supervision. All phases leverage
Constrained Generation, which ensures that the
produced outputs are valid. Fig. 1 illustrates our
proposed system design.

Step 1: Planning. We transform the user’s
query into a list of atomic tasks, which we repre-
sent as JSON data. We design a JSON schema
with two fields: “task”, which takes values in a finite
set of keywords (in our case, “Lightpath”, “Service”
or “Measurement”), and “description”, which is a
summary in natural language of the task and of
its requirements. Intuitively, we can think of the
“prompt → task” mapping as sentence classifica-
tion, and the “prompt → description” mapping as
summarization/paraphrasing, both tasks at which
LLMs naturally excel.

Step 2: Execution. We loop over each task
generated in Planning and perform the following
operations: (i) from the “task” field, we retrieve
the corresponding data model (e.g., if “task” is
“Lightpath”, we retrieve a JSON schema defining
the data model for instantiating a lightpath); (ii)
we provide the “description” field alongside the re-
trieved data model to the LLM. The output is a data
structure (e.g., a JSON list) realizing the task’s re-
quirements, which can then be encapsulated in a
REST message and sent through the NBI.

Step 3: Error handling. Even though the mes-
sages generated by the LLM are syntactically cor-
rect, the SDN controller may not succeed in han-
dling the generated requests (e.g., lightpath cre-
ation fails), returning an error. One option could be
to return control to the user for manual intervention.
Instead, we propose to let the LLM attempt to fix
(some of) the errors. For instance, simple errors
such as “lightpath ID 42 is already taken” can be
easily fixed by choosing a different ID. As a simple
solution, we can concatenate the error body to
the input prompt, turning the error message into
additional requirements, and restart generation
from the planning phase. Note that most classes
of errors (e.g., “no spectrum available between
nodes A and B”) cannot be trivially fixed without
human guidance. In these cases, one can instruct
the LLM to return control in case of specific error
types, or (more challenging) let the LLM decide to
return control if the input context is not sufficient
to resolve the error. Our solution covers only a
limited set of errors, leaving ample room for future
research (e.g., in repeated user-LLM interaction.)

Constrained generation. We leverage formal
grammars to constrain at runtime the generation
process, such that each output is guaranteed to be
a valid data structure under a user-specified data
model. In particular, we leverage JSON Schemas,
which we convert to GGML Bakus-Naur Form
(GBNF) grammars[3]. During generation, we use
the grammar to dynamically restrict the LLM’s out-
put dictionary according to the constraints spec-
ified by the JSON schema and the current gen-
erated text. As an example, consider the JSON
schema in Fig. 1. When generating the field “task”,
we restrict the LLM’s output to choose only among
the specified admissible words, i.e., “Lightpath”,
“Service”, or “Measurement”. This grammar-based
approach can be generalized to arbitrary domain-
specific constraints (e.g., generating syntactically
valid YAML files), providing an effective way for
enforcing “guardrails” to the LLM’s output.

Fig. 2: Filterless optical network testbed. Solid and dashed
lines represent fiber connections and lightpaths, respectively.

Numerical Results
Testbed description. Our testbed is a three-
node optical filterless ring network equipped with
10G (non-coherent) transponders. The testbed
comprises WDM-layer equipment (to establish
lightpaths between source-destination pairs) and
OTN-layer equipment (to provision services that
carry traffic at higher protocol layers), managed
by the SDON controller and an orchestrator devel-
oped within our laboratory. Northbound and south-
bound interfaces are implemented using REST-
Conf. We consider three functionalities of the
SDON controller, i.e., 1) lightpath establishment,
2) service provisioning, and 3) performance mon-
itoring. Lightpaths can be established between
any node pair through 10G transponders, while
services carrying traffic may be 1G or 10G. Mea-
surement campaigns can be initiated on estab-
lished lightpaths and provisioned services, with
15-minute or 24-hour granularities. Fig. 2 illus-
trates our testbed. We show a successful imple-
mentation of Lightpath 1 and Service 1 between
Node 2 and Node 3, and the OSNR measured at
the receiver for Lightpath 1.
Performance evaluation. We use Mixtral-8x7B[2]

as an LLM model. We manually curate a dataset
including 50 prompt-answer pairs. The answers
consist of JSON files realizing the question’s re-
quirements. Each question is marked as Easy,
Medium, or Hard based on the length of the cor-
rect answer, as longer answers imply more tasks
and/or requirements. We consider a generated
answer to be “correct” if all the requirements are
satisfied and “incorrect” if some requirements are
not satisfied and/or the model hallucinates con-
tent beyond the user’s request. Specifically, we
consider four types of incorrect answers, i.e., “In-
valid JSON”, “Missing Tasks”, “Surplus Tasks”,
and “Missing Requirements”. We compare against

Missing Req. Surplus Tasks Invalid JSON Missing Tasks
Error type

0

5

10

15

20

25

N
um

be
r o

f e
rr

or
s

Ours
Baseline

0

25

50

75

100

C
um

ul
at

iv
e

er
ro

r r
at

e
(%

)

Easy Medium Hard
Question difficulty

0

25

50

75

100

N
or

m
al

iz
ed

 e
rr

or
 ra

te
 (%

)

Fig. 3: Performance evaluation of our LLM-based pipeline for
automated optical-network configuration.

a baseline leveraging in-context learning without
task decomposition and constrained generation.

Fig. 3 shows our performance evaluation results.
The baseline achieves a staggering 92% error rate,
showing that LLMs are not plug-and-play tools for
automated network configuration. In contrast, our
approach achieves a 20% error rate. Moreover,
while the baseline’s performance gets worse with
the answer’s difficulty, our approach does not show
a distinct trend. Indeed, the baseline has to gener-
ate long data structures attempting to respect the
user’s requirements and the JSON schema, while
our approach generates a series of self-contained,
small data structures. We then manually inspected
the incorrect responses produced by our system.
In eight out of nine “Missing Requirements” errors,
the user’s request could have been interpreted
ambiguously. For instance, if the user asks “the
ConfigurationState should be defined”, it can ei-
ther mean “the field ConfigurationState should be
present in the JSON”, or “set ‘defined’ as the value
of the ConfigurationState field”, with the latter be-
ing the intended interpretation. Minor paraphras-
ing solves these errors, reducing the total error
rate to 4%. This leaves out two error instances:
one where the model creates two services with
the same name, and one where the model creates
an unsolicited measurement campaign. The first
error can be easily detected by the control plane
and communicated with a message such as “Error:
cannot create two services with the same name.”
By adding this message to the input prompt in
the planning phase, the LLM generates a correct
answer, achieving a 2% error rate. To conclude,
another advantage of our task decomposition ap-
proach is inference time. On a high-end laptop, the
baseline requires 90s to produce an output due to
having to process a long input prompt. Instead, our
approach requires less than 30s (a 3x speedup),
with the main bottleneck being text generation.

Acknowledgements
This work was partly supported by the European
Union under the Italian National Recovery and Re-
silience Plan (NRRP) of NextGenerationEU, part-
nership on “Telecommunications of the Future”
(PE00000001 - program “RESTART”) and by the
PRIN project ZeTON, funded by Italian Ministry of
University and Research.

References
[1] OpenAI et al., GPT-4 technical report, 2024. DOI:

10 . 48550 / arXiv . 2303 . 08774. arXiv: 2303 . 08774
[cs.CL].

[2] A. Q. Jiang et al., Mixtral of experts, 2024. DOI:
10 . 48550 / arXiv . 2401 . 04088. arXiv: 2401 . 04088
[cs.LG].

[3] G. Gerganov, Llama.cpp, https : / / github . com /
ggerganov/llama.cpp/, 2024.

[4] E. J. Hu, Y. Shen, P. Wallis, et al., “Lora: Low-rank adap-
tation of large language models”, in The Tenth Interna-
tional Conference on Learning Representations, ICLR
2022, Virtual Event, April 25-29, 2022, OpenReview.net,
2022.

[5] T. Dettmers, A. Pagnoni, A. Holtzman, and L. Zettle-
moyer, “Qlora: Efficient finetuning of quantized llms”, in
Advances in Neural Information Processing Systems,
A. Oh, T. Neumann, A. Globerson, K. Saenko, M. Hardt,
and S. Levine, Eds., vol. 36, Curran Associates, Inc.,
2023, pp. 10 088–10 115.

[6] Google, Gemini 1.5, https : / / blog . google /
technology/ai/google-gemini-next-generation-
model-february-2024/, 2024.

[7] J. Zamfirescu-Pereira, R. Y. Wong, B. Hartmann, and Q.
Yang, “Why johnny can’t prompt: How non-ai experts try
(and fail) to design llm prompts”, in Proceedings of the
2023 CHI Conference on Human Factors in Computing
Systems, 2023. DOI: 10.1145/3544548.3581388.

[8] J. Loula, M. Baroni, and B. Lake, “Rearranging the fa-
miliar: Testing compositional generalization in recurrent
networks”, in EMNLP Workshop on BlackboxNLP, 2018.

[9] Y. Shen, K. Song, X. Tan, D. Li, W. Lu, and Y. Zhuang,
“HuggingGPT: Solving AI tasks with chatGPT and its
friends in hugging face”, in Thirty-seventh Conference
on Neural Information Processing Systems, 2023.

[10] C. H. Song, J. Wu, C. Washington, B. M. Sadler, W.-L.
Chao, and Y. Su, “Llm-planner: Few-shot grounded plan-
ning for embodied agents with large language models”,
in Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision (ICCV), Oct. 2023.

[11] P. Lu, B. Peng, H. Cheng, et al., “Chameleon: Plug-
and-play compositional reasoning with large language
models”, in Advances in Neural Information Processing
Systems, A. Oh, T. Neumann, A. Globerson, K. Saenko,
M. Hardt, and S. Levine, Eds., vol. 36, Curran Asso-
ciates, Inc., 2023, pp. 43 447–43 478.

https://doi.org/10.48550/arXiv.2303.08774
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
https://doi.org/10.48550/arXiv.2401.04088
https://arxiv.org/abs/2401.04088
https://arxiv.org/abs/2401.04088
https://github.com/ggerganov/llama.cpp/
https://github.com/ggerganov/llama.cpp/
https://blog.google/technology/ai/google-gemini-next-generation-model-february-2024/
https://blog.google/technology/ai/google-gemini-next-generation-model-february-2024/
https://blog.google/technology/ai/google-gemini-next-generation-model-february-2024/
https://doi.org/10.1145/3544548.3581388

	Introduction
	Teaching new skills to pre-trained LLMs
	Designing an LLM-based interface for software-defined optical networks
	Numerical Results
	Acknowledgements

