Machine Learning for Failure Management in
Microwave Networks: a Data-Centric Approach

Nicola Di Cicco*, Graduate Student Member, IEEE, Memedhe Ibrahimi*, Member, IEEE,
Francesco Musumeci, Senior Member, IEEE, Federica Bruschetta, Michele Milano,
Claudio Passera, and Massimo Tornatore, Fellow, IEEE

Abstract—We consider the problem of classifying hardware
failures in microwave networks given a collection of alarms using
Machine Learning (ML). While ML models have been shown to
work extremely well on similar tasks, an ML model is, at most,
as good as its training data. In microwave networks, building a
good-quality dataset is significantly harder than training a good
classifier: annotating data is a costly and time-consuming proce-
dure. We, therefore, shift the perspective from a Model-Centric
approach, i.e., how to train the best ML model from a given
dataset, to a Data-Centric approach, i.e., how to make the best use
of the data at our disposal. To this end, we explore two orthogonal
Data-Centric approaches for hardware failure identification in
microwave networks. At training time, we leverage synthetic data
generation with Conditional Variational Autoencoders to cope
with extreme data imbalance and ensure fair performance in all
failure classes. At inference time, we leverage Batch Uncertainty-
based Active Learning to guide the data annotation procedure
of multiple concurrent domain-expert labelers and achieve the
best possible classification performance with the smallest possible
training dataset. Illustrative experimental results on a real-world
dataset show that our Data-Centric approaches allow for training
top-performing models with ~4.5x less annotated data, while
improving the classifier’s F1-Score by ~2.5% in a condition of
extreme data scarcity. Finally, for the first time to the best of
our knowledge, we make our dataset (curated by microwave
industry experts) publicly available, aiming to foster research in
data-driven failure management.

Index Terms—Microwave Networks, Machine Learning, Fail-
ure Management

I. INTRODUCTION

Machine Learning (ML) has found a broad set of appli-
cations in the design and management of modern commu-
nication networks [1]-[3]. Traditionally, failure management
in microwave networks is dealt with via human inspection of
telemetry data, which is an extremely time-consuming process.
This requires hiring a team of trained domain experts who
spend a significant amount of time identifying the causes of
failure. In the specific context of microwave networks, mod-
ern ML-based approaches for failure management outperform
static expert-driven decision rules, achieving close-to-human
performance within a scalable decision-making framework [3].

*Nicola Di Cicco and Memedhe Ibrahimi are co-first authors.

Nicola Di Cicco, Memedhe Ibrahimi, Francesco Musumeci, and Mas-
simo Tornatore are with the Department of Electronics, Informa-
tion and Bioengineering (DEIB), Politecnico Di Milano, Italy. E-mail:
{name}.{surname } @polimi.it

Federica Bruschetta, Michele Milano, and Claudio Passera are
with SIAE Microelettronica, Cologno Monzese, Milan, Italy. E-mail:
{name}.{surname } @siaemic.com

However, when training and deploying ML models for fail-
ure management, all network operators must face the challenge
of building a good training dataset. For operators, the process
of gathering and labeling data from the field is extremely
expensive, as it requires continuous interaction with costly
human annotators, causing significant time delays (e.g., for
our dataset, it takes two full workdays for an annotator to
label a hundred samples.)

Failure management in microwave networks is no exception
to the aforementioned rule, as it requires domain experts to
manually analyze and correlate the behavior of various link
measures, i.e., Tx/Rx power and the corresponding failure
alarms. Moreover, such experts must identify failure causes
and failure types to take the corresponding countermeasures
for restoring the disrupted services. Such countermeasures
can imply something simpler, such as a decision to re-route
traffic on another link until the quality-of-transmission in the
original link is retrieved, or more complex decisions, such
as sending a team in the field to identify and fix faulty
equipment at a microwave site. While state-of-the-art ML-
based approaches are known to automate such tasks with
close-to-human accuracy, e.g., over 90% [3], the premise to
reaching such performance is based on the assumption that
there are sufficient labeled data for the ML model to learn
robust failure identification rules.

In this work, in contrast to previous literature on failure
management in microwave networks, we shift the perspective
from model-centric (i.e., “How do we design a good ML
model for failure identification?”) to data-centric (i.e., “How
do we build a dataset of good quality for training ML failure
classifiers?”’). We opt for a data-centric approach motivated
by the fact that, in practice, improving the quality of a dataset
brings greater benefits to an ML model than engineering its ar-
chitecture and hyperparameters [4]. We, therefore, explore two
data-centric approaches for hardware failure identification in
microwave networks, i.e., identify a failure cause that occurs in
the hardware component of a microwave network. Specifically,
we investigate the following data-centric Research Questions
(RQs), addressing two crucial domain-specific challenges of
ML-based failure identification in microwave networks: a)
high annotation costs, and b) data scarcity due to infrequent
failures.

RQ1) (Online phase) What is the optimal strategy for
collecting and annotating data? To answer this question,
we propose an Uncertainty-based Active Learning (UAL)
approach. The objective of UAL is to leverage the predictive

uncertainty of the model for labeling the most informative
samples only. By doing so, we can identify a small subset
of data to be labeled by domain experts, thus leading to
significant cost savings without compromising the state-of-the-
art classification performance of our ML model.

RQ2) (Offline phase) How can we overcome data scarcity
from infrequent failure classes? To deal with this chal-
lenge, we leverage data augmentation with synthetic data.
Specifically, we propose using a Conditional Variational Auto-
encoders (CVAE) for generating synthetic samples with per-
class, per-sample granularity. This is especially useful when
the available dataset is highly imbalanced, i.e., in case a
specific hardware failure presents itself only a few times during
the data collection campaign. We illustrate that in a scenario
characterized by extreme class imbalance, data augmentation
with our CVAE ensures a fair classification performance for
all hardware failure classes.

Last but not least, we make our dataset publicly available.
To the best of our knowledge, ours is the first publicly
available dataset comprising telemetry data from real, in-
production microwave networks, collected over several years
and painstakingly labeled by domain experts. We hope that
our contribution will serve as a benchmark for future, exciting
research on the microwave domain.

We summarize our key contributions as follows:

« We make a case for Data-Centric ML for failure manage-
ment in microwave networks, and we focus on hardware
failures (vs. mostly propagation failures in past work).

o We leverage the predictive uncertainty for quantifying the
information gained by labeling batches of data points
via Batch Uncertainty-based Active Learning (BUAL).
Our approach allows training a top-performing model
requiring only ~15% of the full dataset, thus granting
proportional savings in annotation times and costs.

o« We leverage CVAEs for generating synthetic data to
enrich poorly represented failure classes, with the goal of
improving the average classification performance among
all failure classes.

o We make our high-quality dataset publicly available'.
Code is available upon request to the authors.

The remainder of the manuscript is organized as follows.
In Section II, we discuss relevant related work. In Section
III, we provide some background on microwave networks and
describe the main characteristics of the dataset. In Section IV,
we describe our proposed data-centric solutions and discuss
how they fit in the context of failure management in microwave
networks. In Section V, we discuss illustrative numerical
results on our dataset. Section VI concludes the manuscript.

II. RELATED WORK

We overview recent literature investigating applications of
ML to wireless networks, with emphasis on microwave net-
works. Additionally, we describe several recent works apply-
ing Active Learning (AL) and synthetic data generation in
wireless networks.

Thttps://github.com/bonsai-lab-polimi/tnsm2024-data-centric

A. ML for failure management in wireless networks

Failure management is a well-known problem in wireless
networks, and it has been extensively investigated. Among the
earliest works that address the problem of root-cause failure
analysis in radio networks are [5] and [6]. Kliger et al. [5]
have applied correlation techniques based on causality graphs
and associate failure root causes to alarm sequence. Wietgrefe
et al. [6] have adopted a neural network to correlate the
presence of different alarms in mobile network equipment
to an initial cause generating the alarm sequence. In [7],
Szilagyi et al. designed a framework for automatic anomaly
detection and cause identification in mobile networks, based on
observations of alarms and employing a decision process that
emulates human reasoning. Casas et al. [8] use decision trees
for anomaly detection considering synthetically generated data
drawn from realistic microwave network statistics. Ahmed et
al. [9] used supervised learning to detect and localize failures
in cellular networks, focusing on the observation of end-to-
end service performance indicators. Wu et al. [10] proposed
an anomaly detection framework considering time series for
various performance indexes and applying a regression algo-
rithm in cellular networks.

In recent years, our research group has actively investigated
the application of ML-based approaches to microwave net-
works. Musumeci et al. [3] applied several ML approaches
for automatic failure identification in microwave networks,
in particular, proposing new models for the identification
of failure causes by supervised ML and a semi-supervised
automated labeling procedure based on auto-encoders. We ad-
dress the problem of hardware failure as a supervised-learning
classification problem as addressing similar problems in [3] via
self-supervised pre-training was found to work overall poorly,
therefore making the ground-truth information fundamental.
Moreover, in microwave networks, different features can help
capture different failure causes. For example, propagation
failures can be discriminated from features associated with
radio performance (e.g., transmitted/received power statistics
and modulation format [3]), while equipment hardware failures
can be discriminated from features associated with equipment
alarms. Lateano et al. [11] and Ayoub et al [12], [13]
investigated several ML-based approaches for failure root-
cause prediction and application of eXplainable Artificial
Intelligence (XAI) in microwave networks, respectively.

Compared to previous model-centric works, we propose
data-centric solutions allowing for cost-efficient data collection
without compromising on the performance achieved in the
state-of-the-art literature. Specifically, we leverage CVAEs for
synthetic data generation and Batch AL to identify the most
informative data points to label.

B. Active Learning applied to wireless networks

From an operator’s point of view, gathering unlabeled data
from the field is often a by-product of network monitoring.
However, labeling said data (especially for hardware failures
in microwave networks) can be an extremely costly and time-
consuming process. To address the challenge of data labeling

with the objective of reducing operational cost and time, we
leverage a Batch AL approach.

Pan et al. [14] make use of AL in microwave networks
to continuously update the detection model at low cost. They
show that, using AL, only 7% of the training data is required
to achieve comparable results with the full dataset. Shahraki
et al. [15] investigate the application of AL to query labels
during training in the context of network traffic classification.
Xu et al. [16] propose an AL-based solution to minimize the
prediction error for classification-based mobile crowd-sensing
subject to upload and query cost constraints.

In contrast to prior literature, we make a case for an
AL framework leveraging the predictive uncertainty in tree
ensembles. The motivation is twofold: first, tree ensembles
are known to be the best-performing models in tabular datasets
[17], [18]; second, tree ensembles allow for efficient epistemic
(or knowledge) uncertainty sampling in AL, which is the
current state-of-the-art for uncertainty sampling [19], [20].
Moreover, current AL applications in communication networks
focus on querying one sample at a time, exacerbating anno-
tation and training times. To solve this problem, we develop
a Batch AL algorithm to simultaneously query up to 50 data
points per iteration, showing minimal F1-Score degradation
(~ 0.025 in the worst case) compared to the single-query
optimum on the same annotation budget. This grants an order-
of-magnitude reduction in annotation and model (re)-training
times.

C. Synthetic data generation in wireless networks

A common challenge when applying ML to wireless net-
works is data scarcity, as it is often expensive to have access to
operating networks, and, even when access is granted, it is ex-
pensive to gather and label data. Most existing research relies
on mathematical models for data generation, however, such
models are based on several assumptions and simplifications
and may not fully represent realistic scenarios.

In the following, we cover related works that have applied
Generative Adversarial Networks (GANs), Synthetic Minority
Oversampling Technique (SMOTE), and Variational Auto-
Encoders (VAEs) to address data scarcity.

Ayanoglu et al. [21] provide an overview of applying
GANs to next-generation networks, and show several case
studies of synthetic data generation. Navidan et al. [22] review
the application of GANs to computer and communication
networks, including mobile networks, network analysis, the
internet of things, the physical layer, and cyber-security. Yang
et al. [23] make use of GANs for autonomous wireless channel
modeling without any domain-specific knowledge or technical
expertise.

Clark IV et al. [24] investigate the problem of data augmen-
tation in the context of radio frequency systems. Davaslioglu
et al. [25] investigate the application of GANs to generate
additional synthetic data to improve classifier accuracy and
adapt training data to spectrum dynamics applied to spec-
trum sensing. Tang et al. [26] investigate the application of
GANs to automated modulation classification in cognitive
radio networks and evaluate the classifier’s performance when
the dataset is enriched with synthetically generated data.

An alternative, simpler approach for synthetic data genera-
tion is SMOTE. Massaoudi et al. [27] utilize it to handle class
imbalance for intrusion detection in smart grid operations.
Sun et al. [28] utilize SMOTE to address class imbalance in
the context of self-organizing cellular networks to address the
problem of failure diagnosis. Abdulkareem et al. [29] address
class imbalance in an Internet-of-Things (IoT) context to
perform a classification task for intrusion detection. Similarly,
Tesfahun et al. [30] has implemented SMOTE to address class
imbalance to perform an intrusion detection classification task
using a Random Forest classifier.

Several works have used VAEs for generating synthetic data.
Razghandi et al. [31] propose a VAE-GAN as a smart grid data
generative model able to learn several types of data distribu-
tions and generate samples from the same distributions without
performing any prior analysis on the data before the training
phase. Qu er al. [32] propose a network data reinforcement
method based on the multiclass VAEs to complete training
tasks with a limited amount of data. The proposed solution
can control the proportion of different classes by adjusting
parameters, thus solving the imbalance problem in network
data. Khan et al. [33] use VAEs for data augmentation for
failure management in optical networks.

Compared to previous works that make use of other ap-
proaches for synthetic data generation, such as Conditional
Tabular Generative Adversarial Networks (CTGANSs) [34] and
SMOTE [35], a CVAE-based solution proves to be more ap-
propriate for our purpose. GAN-based solutions are unsuitable
for our use case because i) GANs thrive in the presence of
large volumes of data, but in our case, the initial dataset
is of modest size (i.e., less than 1700 observations), and ii)
GANSs require a delicate balance between the generator and
discriminator networks, and in small datasets this balance can
be harder to achieve, leading to training instability, oscilla-
tions, and difficulties in convergence. We opted for VAEs
as we empirically found them more reliable and easier to
train than GANs for our application. We underline that the
empirical studies of [36] illustrate different pros and cons of
using VAEs as opposed to GANs for tabular data generation.
VAESs achieve better performance metrics and are easier to
train, but GANs make it easier to achieve differential privacy
for the training data (which is presently not a concern in this
work.) As for simpler approaches such as SMOTE, there are
several shortcomings [37], such as: i) in case a minority class
is extremely sparse, SMOTE could lead to overfitting and to a
synthetic data generation that does not adequately represent the
underlying distribution of the real data; ii) in high-dimensional
spaces, SMOTE’s effectiveness decreases as the curse of
dimensionality makes it difficult to find meaningful neighbors
for interpolation.

We do not claim that CVAE-based approaches are always
better than other alternatives, e.g., GANs, as such choice
depends on the case study. However, for our use case study,
we show that adding synthetically generated data improves
the per-class performance, especially for the under-represented
failure classes. Compared to the related works for data gener-
ation, namely, CTGAN and SMOTE, we provide a qualitative
comparison in the numerical results (see Section V).

Antenna (Tx) Signal — Antenna (Rx)
Amplifies and - — — = ||_IH Receives signal
transmits the signal and. amplifies it
again
Transmission Line (Tx) | Transmission Line (Rx)
Brings signal Brings signal from

from radio to antenna antenna to radio

Radio (Rx)

Radio (Tx) | % d
Receives signal

Generates the
signal

D_V
‘ i __

7Iigéeiling End

= Transmigriaind

Fig. 1. Basic components of a microwave link [3]

III. BACKGROUND ON MICROWAVE NETWORKS AND
DATASET DESCRIPTION

In this Section, we provide a brief overview of the main
components in a microwave network, and we describe the
SIAE Microelettronica hardware failures dataset.

A. Microwave Networks

Figure 1 shows the basic structure of a microwave link,
highlighting the transmitting end and the receiving end. Each
end is composed of three main elements:

1) A Microwave radio that generates the signal (at the
TX site) and receives the signal (at the RX site). The
microwave radio can be placed at different locations,
i.e., either inside a building or shelter (full-indoor), in the
proximity of the antenna (full-outdoor), or by adopting a
hybrid solution, called split-mount, where the electronic
devices are distributed between an Outdoor Unit (ODU)
and an Indoor Unit (IDU).

2) A transmission line brings the signal from/to radio
to/from the antenna. It is typically implemented via
coaxial cables, suitable for frequencies up to around 2
GHz, or waveguides, used for higher frequencies up to
around 13 GHz (and, in some rare cases, up to 40 GHz).
Transmission lines are responsible for non-negligible
signal losses, depending on signal frequency, and may
strongly affect the quality of transmission in case of
physical medium deterioration.

3) A directional antenna, usually parabolic-shaped, is char-
acterized by its gain, size, and directivity functions.

In this paper, we focus on hardware failures that can impact the
hardware radio, i.e., IDU failure, ODU failure, cable failure,
and power failure. In the following, we provide a detailed
description of our hardware failures dataset.

B. SIAE Microelettronica hardware failures dataset

Microwave-link unavailability is typically defined in terms
of Unavailability Seconds (UAS), representing the number of
seconds over which the number of errored bits exceeds a given
threshold. The UAS can be caused by various phenomena,
such as propagation failures, due to, e.g., atmospheric factors
such as rain, fog, temporary obstacles, or hardware failures
due to equipment malfunction or aging. Hence, to automate
the identification of failure causes leading to UAS and to avoid
the continuous involvement of domain experts, we develop a

set of ML-based solutions. To this end, we constructed a high-
quality dataset of hardware failures from a real microwave
network via a Network Management System developed by
SIAE Microelettronica.

Our dataset comprises four non-overlapping classes of fail-
ure types: 1) Class-0: IDU failure, 2) Class-1: ODU failure,
3) Class-2: cable failure, and 4) Class-3: power failure. Each
failure type is identified based on alarms issued by the radio
equipment, serving as input features to the ML-based classifier.

We collected and labeled 1669 data points (observations) in
total. The ground-truth labels were attributed and extensively
validated by domain experts. Specifically, the frequency of
each failure class in our dataset is as follows:

e Class-0 (IDU failure): 515 observations

e Class-1 (ODU failure): 611 observations
e Class-2 (Cable failure): 207 observations
o Class-3 (Power failure): 336 observations

The skew of our dataset, i.e., the ratio between the highest
and the lowest class frequencies, is approximately 3, showing
a moderate degree of class imbalance.

Each observation in the dataset aggregates data from 15-
minute non-overlapping windows. For each microwave link
and 15-minute window, the input to the classification problem
consists of 164 features, each one corresponding to the number
of seconds in which a specific alarm was active in the window.
Specifically, the features take values between 0 and 900, with
0 indicating that the alarm is OFF and 900 indicating that the
alarm is ON during the whole 15-minute window. To provide
a rough idea of the human effort required for the manual data
labeling, two domain experts from SIAE Microelettronica have
spent more than 2 weeks” to label all 1669 data points.

To preserve confidentiality, we have performed the fol-
lowing operations to anonymize the dataset: 1) We masked
all alarm names to [alarmg - alarmigz], 2) We removed all
timestamps, 3) We randomly permuted the rows and columns
of the original dataset (i.e., there is no semantic correlation be-
tween adjacent columns and no temporal correlation between
adjacent rows), 4) We removed all sensitive information that
could be used for tracing the specific microwave link.

For both the synthetic data generation and AL, we initially
perform a feature preprocessing step, and then we estimate the
performance of several ML models in terms of Fl-score via
stratified K-fold cross-validation.

C. Feature preprocessing

We devise three strategies for representing the alarm fea-
tures based on when an alarm in a link is ON:

1) Mode-1: Binary, in which alarms are binarized, i.e., “0”
if an alarm is OFF for the full 15-minute window, and
“1” if the alarm is ON for at least 1 second.

2) Mode-2: Categorical, in which alarms are represented by
categorical features.> We consider four categories: “0”
if an alarm is OFF for the full 15-minute window, “1”

2For our specific task, domain experts were able to annotate approximately
50 data points for each full workday.

3Note that the identification of categories is done in collaboration with
domain experts, to distill the most useful information for decision-making.

Variational

|, |Synthetic data
Autoencoder

generation
T

Offline Train/Test

Active
Learning

ML
Training

Uncertainty
monitoring

i Online Deployment and Data Collection

D ——

Fig. 2. Data-Centric ML for failure management in microwave networks. Synthetic data generation is performed in the Offline Train/Test phase, while AL is

leveraged for the Online Deployment and Data Collection phase.

if an alarm is ON for no more than 45 seconds (low-
severity alarm or false alarm), “2” if an alarm is ON
between 45 seconds and 450 seconds (medium-severity
alarm), and “3” if an alarm is ON between 450 seconds
and 900 seconds (high-severity alarm).

3) Mode-3: Inherent, in which alarms take values between
0 and 900, as measured by the radio equipment.

In our numerical results, while we consider all three modes
of data representation in the case of UAL, we consider only
Mode-1 and Mode-2 features for synthetic data generation via
the CVAE, as we have observed that Mode-3 (i.e., not applying
any preprocessing) results in worse classification performance.
Moreover, we have found the synthetic data generation process
to be highly unreliable when generating data with continuous
features, compared to either categorical or binary features.
Overall, as a generic guideline for all the ML tasks considered
in this work, binning the continuous alarm features turns out
to be consistently beneficial.

IV. DATA-CENTRIC ML FOR FAILURE MANAGEMENT IN
MICROWAVE NETWORKS: BUILDING BLOCKS

In Fig. 2 we illustrate the core elements in our Data-Centric
ML solution for failure identification in microwave networks.
Our solution comprises two sections: 1) Offline Train/Test,
and 2) Online Deployment and Data Collection. Synthetic data
generation is performed during the training phase when an
offline dataset is already available. AL is performed during
real-time inference, in order to guide the data labeling process
towards the most informative samples.

In the following, we provide a detailed description of
each building block. We first discuss UAL, as the microwave
network we consider is currently operating, and then comment
on synthetic data generation, as this process can be performed
only once a dataset is available for offline training.

A. Uncertainty-based Active Learning

The goal of AL is to train an ML model with the fewest
amount of labeled samples. Our core assumption is that large
quantities of unlabeled data are available. This holds true
for failure management in microwave networks, as collect-
ing alarm sequences is fully automated and inexpensive. As
mentioned before, annotating data in our application scenario
is not only very costly but also time-expensive.

At a high level, AL allows the model to actively query the
ground-truth label from unlabeled samples. The most crucial

design choice in AL is defining a query strategy for selecting
only the most informative samples.

A simple way to quantify the informativeness of an un-
labeled alarm set is to estimate the predictive uncertainty
associated with its predicted hardware failure class. Generally,
the total predictive uncertainty can be decomposed into Data
Uncertainty (DU) and Knowledge Uncertainty (KU) [38]. DU
is caused by the inherent noise in the data, and therefore cannot
be reduced by increasing the dataset size. On the other hand,
KU is caused by the model’s ignorance, i.e., by the model
being presented with data from a different distribution than
training. In contrast to DU, KU may be reduced by increasing
the dataset size. Therefore, we are interested in leveraging KU
as an “informativeness score” for labeling new samples.

While there are several strategies for uncertainty decom-
position in ML, e.g., Bayesian Neural Networks, our previ-
ous works [3], [12] illustrated that the best-performing ML
models for failure identification in microwave networks were
ensembles of Decision Trees (DTs), such as Random Forests
(RFs) or Gradient Boosting Decision Trees (GBDTs). Indeed,
the superiority of tree-based models on small to medium-size
tabular datasets has been validated by large-scale empirical
studies [17], [18]. Therefore, we would like to seamlessly
incorporate AL in our failure management framework while
keeping our best models. For this reason, we leverage approx-
imate uncertainty decomposition in ensemble models, such as
RFs and GBDTs.

Formally, assume that we have trained an ensemble of
M models on a dataset D. Let p(y|x,D) be the predictive
distribution of the ensemble, p(y|x, (")) be the predictive
distribution of m-th model h in the ensemble (e.g., in RFs
and GBDTs h(™ is a DT), and let p(h|D) be the distribution
of the ensemble members if trained on dataset D (e.g., in
RFs and GBDTs this represents the probability distribution of
generating a certain DT). x denotes the set of alarms while y
denotes the failure class. We can define and estimate the KU
in Eq. (1), as follows:

= H[p(ylx, D)]

Total Unc.

I(y,h\x, D) _E’p(h\D)H [p(ylx7 h)])

Data Unc.

Knowledge Unc.

M
~H [Mmzzlp ylx, ™)] Z 7—[[(y, |x, h(m))}

where H[-] and Z[-, -] denote Shannon entropy and Information
Gain, respectively [38]. The Total Uncertainty (TU) is defined

UNLABELED

Class Y

LABELED

Class 1

Classifier Accuracy/F1-score

ML
Classifier

2

Knowledge Label the sample
Uncertainty — with highest
Quantification uncertainty
1@
[)

Domain expert

Fig. 3. Single-query Uncertainty-based Active Learning (UAL)

as the entropy of the predictive distribution of the ensemble,
obtained by averaging between all ensemble members.* The
DU is defined as the expected entropy value of the single en-
semble member. Finally, the KU is defined as the information
that model h gains by revealing the failure class y associated
with the alarm set x, and is estimated by subtracting the DU
from the TU.

We develop two approaches based on the policy for querying
data points to label: i) single-query UAL), and ii) multi-query
BUAL. Figure 3 and Fig. 4 illustrate the application of UAL
and BUAL, respectively, for guiding the data collection and
labeling procedure in our failure management framework. We
assume a small initialization pool of labeled data, e.g., 20-
40 labeled alarm sets, and a large pool of unlabeled data,
e.g., 1000-1500 alarm sets. In the following, we describe the
workflow of UAL and BUAL.

B. Single-query Uncertainty-based Active Learning

The framework operates in four steps (see Fig. 3): (1) Data
from the pool of UNLABELED data are queried via the ML
classifier which then does (2) Uncertainty Quantification of
data points in terms of KU. The alarm set with the highest KU
values is forwarded to a domain expert to be labeled (3) Label
the sample with highest KU, which is then added to the pool
of labeled alarms. Note that in the case of single-query UAL,
one sample is labeled and added to the pool of LABELED data.
The ML model is retrained from scratch on the updated dataset
(4), and the process is iterated until a stopping condition is
reached (e.g., a pre-defined budget of data points to label is
met or a pre-defined performance metric, such as F1-Score, is
met on a held-out validation dataset). In our case, we consider
a fixed budget of data points, which can be related to a limited
financial budget for compensating domain experts and/or to a
time constraint on data collection and labeling.

C. Batch Uncertainty-based Active Learning

In principle, UAL assumes adding one data point per
iteration, which guarantees that, at each iteration, we are
sampling the alarm set that provides the highest expected
information gain for our model. We now consider a Batch
AL scenario, where multiple data points are labeled per AL
iteration. There are two main practical reasons motivating the

“In ensemble learning, the KU can also be interpreted as the level of
disagreement between different ensemble members.

UNLABELED

Classifier Accuracy/F1-score

LABELED
N\ _—

(crass 0)(crass 1

‘ Class X || Class v
N\ /

ML
Classifier

N\
Class2| | Class 3)
N

Class / o \\
W /(ClassZ)
N

Knowledge
Uncertainty ——>
Quantification

Label k samples with
highest uncertainty

()
[)
Domain expert

Fig. 4. Batch Uncertainty-based Active Learning (BUAL)

reduction;

K-Means
clustering

2

need for Batch AL over single-query AL: 1) in real-world
scenarios, it is often the case that multiple domain experts
are dedicated to data annotation; 2) when annotating one data
point per iteration, it is necessary to re-train the ML classifier
for each newly-labeled data point. Instead, Batch AL re-trains
the ML classifier only once per batch of X data points, e.g., X
= 50, granting a proportional reduction in training times. We
therefore propose BUAL to solve the aforementioned issues.

A first, naive query strategy for BUAL is to take the top
K data points with the highest KU. We refer to this simple
approach as BUAL-TopK. However, the top K data points
with the highest KU might be highly correlated: for instance,
revealing the ground truth for one point only would render
all the remaining K — 1 not very informative. Indeed, our
numerical results in Section V-B illustrate that BUAL-TopK,
though performing much better than random sampling, is
considerably less data-efficient than single-query UAL.

Therefore, we aim for a Batch AL algorithm able to sample
points that are both i) highly informative and ii) sufficiently
diverse. To balance this delicate trade-off, we leverage di-
mensionality reduction and K-means clustering to develop
BUAL-KMeans, which, unlike BUAL-TopK, allows multiple
simultaneous queries (up to 50) with negligible performance
degradation with respect to single-query UAL.

The core design choice in BUAL-KMeans is to leverage
K-means clustering [39] to avoid sampling redundant data
points. Previous literature in Batch AL with neural networks
illustrated that clustering is an effective strategy for balancing
diversification and informativeness [40], [41]. Unfortunately,
neural networks are a bad fit for our problem, as it is
formulated on tabular data [17], [18]. Moreover, given the
relatively high dimensionality of our dataset (164 features)
and its moderate size (1669 observations) with respect to
the large-scale benchmark datasets in deep learning, distance-
based clustering algorithms such as K-means cannot be used
out-of-the-box for our problem.

To address these issues, we apply a dimensionality-
reduction step to the unlabeled data using Principal Com-
ponent Analysis (PCA) [42] and keeping only the first three
dimensions with the highest variance. This allows filtering out
small pairwise distances, enabling effective data separation via
K-means clustering. Note that, even though the dimensionality
reduction causes significant information loss, the compressed
features are used only for clustering, whereas the ML classifier
is presented with the full set of alarm features.

q¢(Z|X, Y) pG(x|zaY)

x | Probabilistic| z | Probabilistic x
Encoder Decoder

o[[

Lovae = —logps(x|z,y) + Dxr(g4(2/%,y) || p(2]y))

Fig. 5. Conditional Variational Autoencoder (CVAE). The one-hot encoded
hardware failure class vector y conditions both the encoder and the decoder.

Putting everything together, the BUAL-KMeans algorithm
operates in five steps (see Fig. 4): (1) Data from the pool of
UNLABELED data are fed to the PCA block for dimensionality
reduction, and then, in step (2), the unlabeled data are clustered
via K-Means Clustering. In step (3), the KU Quantification
estimates the information gain through the ML classifier for
all data points in the pool of UNLABELED data. The decision
on which data points to pass on to the domain experts is taken
based on K-Means Clustering, such that the data point with
the highest KU from each cluster is passed on, e.g., we set
K = 10 clusters for selecting 10 data points to be labeled
in one iteration. In step (4), the batch of alarm set with the
highest KU values is forwarded to domain experts for labeling
(Label k samples with highest uncertainty) and then added to
the pool of LABELED data. Similarly to single-query UAL,
in step (5), the ML model is retrained from scratch on the
updated dataset, and the process is iterated until a stopping
condition is reached.

D. Synthetic Data Generation with CVAEs

VAEs are deep generative neural networks that can effi-
ciently learn probabilistic models of high-dimensional data
[43]. A VAE comprises a probabilistic encoder network and a
probabilistic decoder network. The encoder g4(z|x), parame-
terized by ¢, maps an input data sample to a latent space. The
decoder py(x|z), parameterized by 6, maps a sample from the
latent space to the input space. VAEs are trained by minimizing
the Evidence Lower Bound (ELBO) loss, given by Eq. (2), as
follows:

ELBO = —logpp(x|z) + Dki(gs(2[x) || p(2)) . (2)

MLE reconstruction

KL regularization

The ELBO loss comprises a Maximum Likelihood Estima-
tion (MLE) reconstruction term and a Kullback-Leibler (KL)
regularization term [43]. The MLE reconstruction term ensures
that the samples reconstructed by the decoder are faithful to the
original distribution of the input data. The regularization term
forces the variational posterior to be as close as possible to the
true posterior. In practice, the KL regularization term forces
the latent space to assume the shape of the prior distribution.
In this way, after the VAE is trained, one can efficiently
generate synthetic data by i) sampling z vectors from the prior
distribution and ii) feeding the z samples to the probabilistic
decoder to produce synthetic x samples.

While one could use vanilla VAE to generate data, we are
interested in sampling from the class-conditioned distribution
of the input data. In our application scenario, we would like
to have fine-grained control over the number of samples we
generate for each failure class, as some classes may be severely
underrepresented. While sampling from a specific class could
be trivially achieved by training a vanilla VAE and performing
rejection sampling, there are two major drawbacks. First, said
methodology can become computationally expensive if large
amounts of per-class data are queried and/or some classes are
less represented in the input data, and are therefore generated
less frequently. Secondly, it is well-known that VAEs suffer
from mode collapse, that is, the model generates repetitive
samples that do not capture the full diversity of the training
data. Specifically, in our application scenario, we are interested
in modeling 1) the diversity between alarms signaling differ-
ent hardware failure classes, and 2) the diversity of alarms
signaling the same hardware failure class.

To solve these problems, we employ CVAEs, which learn
a probabilistic model of the input data conditioned on some
contextual information (in our case, the class information).
This is easily achieved by supplying a one-hot vector y
encoding the hardware failure class to both the encoder and the
decoder networks. The CVAE ELBO loss [44] then becomes
as given by Eq. (3), as follows:

ELBO = —log pg(x|z,y) + Dxi(¢0(z|%,y) || p(2)). (3)

MLE reconstruction

KL regularization

Similarly as before, to generate new data i) we sample z
vectors from the prior distribution, ii) we feed the z samples
and a class vector y to the probabilistic decoder. In this way,
we achieve fine-grained control on the exact per-class quantity
of synthetic data we generate with no additional computational
effort. Moreover, as the class information is supplied to the
model, the CVAE must only model the diversity between
samples in the same class, which is arguably an easier learning
task compared to a standard VAE.

Figure 5 shows the building blocks of the CVAE used for
augmenting our hardware failures dataset, highlighting that
Probabilistic Encoder and Probabilistic Decoder are condi-
tioned on the one-hot encoded class y.

V. ILLUSTRATIVE NUMERICAL RESULTS

In this Section, we first describe the evaluation settings
and then discuss our illustrative numerical results for AL and
synthetic data generation.

A. Evaluation settings

Here, we discuss our numerical evaluations of the proposed
Data-Centric methodologies for hardware failure identification
in microwave networks.

We report macro-averaged F1-score (hereafter referred to as
macro Fl-score) as the main performance metric, as we are
interested in fair performance for all classes.> As UAL requires

5In our simulations, we consider the macro-averaged Fl-score, which is
computed using the arithmetic mean of all per-class Fl-scores. This metric
treats all classes equally regardless of their number of data points in the
dataset.

retraining the model after a single query, we also report the
model training times. Our experiments have been conducted
on a Linux PC with an Intel Core i7-6700 processor and 32
GB RAM. Our ML algorithms were implemented using Scikit-
Learn [45] for RFs and XGBoost [46] for GBDTs. We opted
to use XGBoost and RFs for our application because they
have been found to be among the best-performing models for
tabular data [17], [18].

B. Uncertainty-based Active Learning

We consider three modes of alarm feature representation
and three sizes of the initial dataset.

o Alarm representations are described in Section III, and
are: 1) Mode-1: Binary, 2) Mode-2: Categorical, and 3)
Mode-3: Inherent.

« We consider three cases of initially labeled datasets: 1) 25
data points, 50 data points, and 3) 100 data points. The
number of data points per class in the initially labeled
dataset reflects the percentage of each hardware failure
class in the complete dataset, i.e., Class-2 comprises 12%
of the total dataset, so in 100 data points, 12 data points
belong to Class-2.

We evaluate the classification performance in terms of
macro Fl-score using stratified K-fold cross-validation with
K = 5. We assume an available budget for labeling 500 data
points, which, in our practical experience, translates to a whole
week of work for two domain experts.

Note that all numerical evaluations for data labeling, i.e., the
proposed UAL and all baselines, are conducted considering the
original dataset described in Section III-B, with no additional
synthetically generated data involved.

For Batch AL, we consider querying ¢) 1 sample, i) 10
samples, #i7) 25 samples, and v) 50 samples per AL iteration.

We consider three baselines: 1) Virtual Ensembles in Gra-
dient Boosted Decision Tree (GBDT-VE) models as a repre-
sentative state-of-the-art baseline [38] for uncertainty quan-
tification and Active Learning on tabular datasets. GBDT-VE
constructs a “virtual ensemble” by aggregating the predic-
tions of multiple sub-models that compose a single GBDT
model. The sub-models are constructed via truncation, i.e., by
removing trees from the starting model. In contrast to RFs,
where trees are trained independently, GBDT-VE has a high
degree of correlation between trees, which adversely affects
its uncertainty estimations. 2) Random sampling, i.e., data
points to be queried are selected randomly, corresponding to
a standard labeling strategy without AL, and 3) Full-Training,
i.e., the performance of the best ML classifier when training
on the full dataset as an upper bound on the best performance
a ML model can achieve. For our problem, RFs and GBDTs
roughly achieve the same level of performance when trained
on the full dataset.

1) UAL vs. Baselines: Figures 6a, 6b and 6¢ show results
for the RF classifier in terms of macro Fl-score for Mode-1
with K-queries per AL iteration, where K = 1, 10, 25 and 50.

We observe that single-query UAL meets the Full training
Fl-score by querying less than 200 data points, compared to
the approximately 1400 data points used for Full training. In

TABLE I
SINGLE-QUERY UAL TOTAL TRAINING TIMES AS A FUNCTION OF I)
CLASSIFIER TYPE, AND II) ALARM MODE REPRESENTATION.

Classifier Alarm mode Training time (mins)
BINARY 420
GBDT CATEGORICAL 179
INHERENT 234
BINARY 19
RF CATEGORICAL 19
INHERENT 19

other words, UAL would require two domain experts to work
for two days instead of two weeks. These remarkable time
(and hence cost) savings have proven to be very significant
for our industrial collaborators for a timely and cost-efficient
deployment of the proposed ML-based failure management
framework. Moreover, single-query UAL always outperforms
GBDT-VE and Random Sampling, the latter being unable
to meet the Full training Fl-score even after labeling 500
additional data points to the training set. This highlights the
practical effectiveness of AL for our application scenario.

In the Batch AL setting, we observe that BUAL-TopK,
while outperforming random sampling, is significantly less
data-efficient than single-query UAL and GBDT-VE. This
is because BUAL-TopK does not consider diversifying the
data in the batch. Conversely, BUAL-KMeans follows al-
most perfectly the trend of single-query UAL for batch sizes
K=10 and K=25, while performing comparably to single-query
GBDT-VE for K=50.

The practical advantages of BUAL over single-query UAL
are exemplified in Fig. 6d, which shows the Fl-score as a
function of the AL iterations for a batch size K=50. We
observe that BUAL-KMeans and BUAL-TopK reach the F1-
score of Full training with at most 10 AL iterations, whereas
single-query UAL requires around ~25x more AL iterations
to reach the same F1-score. In practical terms, the cost savings
of BUAL-KMeans over single-query UAL are twofold: first, if
multiple domain experts are available, the annotation times can
be reduced proportionally to the batch size; second, BUAL-
KMeans drastically reduces the number of times the model
needs to be re-trained from scratch.

We have performed the same analysis for the other modes
of alarm features, namely, Mode-2 (Categorical) and Mode-3
(Inherent), and the main takeaways are consistent with the re-
sults shown above. Similarly, the same takeaways highlighted
in previous paragraphs hold in case the initially labeled data
set has 50 data points and 100 data points.

2) Training times: In the following, we briefly discuss the
training times of single-query UAL while varying: 1) the two
ML classifiers considered in our work, i.e., RF vs GBDT, and
2) alarm feature modes, i.e., Binary vs Categorical vs Inherent.

We report the training time in the case of UAL single-
query, i.e., querying one data point per UAL iteration, as we
observed that Batch AL with batch size K follows roughly a
proportional reduction in training time by % Batch AL also
includes PCA and clustering, even though their contribution to
the total training time is negligible. Note that, for a scenario
with a budget of 500 data points to be labeled, there are 500
iterations of the AL framework.

1.00

0.95 — A

0.90

0.85
<
é 0.80 BUAL-KMeans (10 queries)
T 0.75 BUAL-TopK (10 queries)

0.70 —— UAL (one query)

—— GBDT-VE (one query)
0.65 —— Random sampling
0.60 ---- Full training
0 50 100 150 200 250 300 350 400 450 500
Training set size
(a) 10 queries per Batch AL iteration

1.00

0.95 | A

0.90

0.85
<
g 0.80 BUAL-KMeans (50 queries)
e 0.75 BUAL-TopK (50 queries)

0.70 —— UAL (one query)

—— GBDT-VE (one query)
065 —— Random sampling
0.60 ---- Full training
0 50 100 150 200 250 300 350 400 450 500

Training set size

(c) 50 queries per Batch AL iteration

1.00
0.95 T e
0.90
0.85
Q
é 0.80 BUAL-KMeans (25 queries)
T 0.75 BUAL-TopK (25 queries)
0.70 —— UAL (one query)
—— GBDT-VE (one query)
0.65 —— Random sampling
0.60 ---- Full training
0 50 100 150 200 250 300 350 400 450 500
Training set size
(b) 25 queries per Batch AL iteration
1.00
095 [T e
0.90
0.85
Q
g 080 BUAL-KMeans (50 queries)
L 0.75 BUAL-TopK (50 queries)
0.70 —— UAL (one query)
—— GBDT-VE (one query)
065 —— Random sampling
0.60 ---- Full training
0 50 100 150 200 250 300 350 400 450 500

Active Learning iterations

(d) 50 queries per Batch AL iteration

Fig. 6. Fl-score of an RF classifier for our proposed AL strategies, UAL and BUAL, against GBDT-VE, Random sampling, and Full training. (a)-(c): Fl-score
while varying the number of concurrent AL queries. BUAL-KMeans performs nearly as well as single-query UAL. (d): Fl-score as a function of the number
of AL iterations for 50 queries per batch. BUAL requires very few AL iterations to reach the Full training upper bound.

Table I compares the training time for GBDT and RF.
We observe that RFs are significantly more computationally
efficient than GBDTs (19 vs. 420 minutes). This is because
in RFs the KU can be computed considering each tree in
the ensemble, while with GBDTs one needs to train multiple
GBDT models, due to the fact that boosted trees are too
highly correlated. Though GBDT-VE is more computationally
efficient than GBDT ensembles in computing KU, we demon-
strated that, for our use case, its AL performance is generally
inferior compared to our RFs.

Regarding alarm modes, we notice that the training time
of RFs is similar regardless of the alarm mode, while in the
case of GBDT we observe that the training times are highly
dependent on the chosen alarm representation. Specifically, the
Categorical mode has the lowest training time, followed by the
Inherent and Binary modes. This behavior is purely dependent
on the implementation details of XGBoost, especially on the
tree-growth policy. A possible explanation could be that, since
Binary features are less informative than Categorical features,
XGBoost tends to grow more trees to their maximum allowed
depth (6 by default), resulting in longer training times.

Finally, we consider that a total training time of a few tens
of minutes is reasonable in practice, as STAE Microelettronica
has adopted our solution in the field.

C. Synthetic data generation

We now illustrate our numerical results for synthetic data
generation. To simulate a scenario of extreme data scarcity,

we randomly remove 80% of the data points from the training
set for Class-2 (i.e., the least represented class), leading to
an extreme imbalance in the class representation. This mimics
a practical scenario of a rare occurrence of specific failures
during the data collection campaign. The goal of this analysis
is to show that, even in the case of a highly imbalanced dataset,
data augmentation with CVAE allows for a fair classification
performance for all hardware failure classes. We consider three
dataset rebalancing strategies via CVAE:

1) Balanced: starting from an unbalanced scenario, gener-
ates synthetic data to ensure an equal number of data
points for all classes.

2) Balanced x2: doubles the number of data points once
having balanced the number of data points for all classes.

3) Fixed: generates a fixed number of synthetic data for
each class, regardless of their percentage in the total
dataset. We consider two cases of adding a fixed number
of synthetic data: 1) add 150 data points to each class,
and 2) add 400 data points to each class.

We compare the following models: 1) Base model: the ML
model is trained on real data only, and 2) Mix model: the
ML model is trained augmenting the real data with synthetic
data. For the sake of brevity, we only represent results with
Mode-1: Binary alarms. Similar considerations can be drawn
for the Categorical representation of alarms.

Note that as Base considers training on real data only, the
size of the training set is always equal to 1204 data points.
On the other hand, the total number of training data in Mix

TABLE 11
SYNTHETIC DATA GENERATION: ACCURACY, F1-SCORE, PRECISION AND RECALL FOR BASE AND MIX MODELS COMPARING CVAE, SMOTE AND
CTGAN. FOR CVAE, WE REPORT FOUR CASES OF DATA GENERATION: I) BALANCED, II) BALANCED X2, 111) FIXED 150, AND 1V) FIXED 400. WE
REPORT MEANS AND STANDARD ERRORS OVER 5-FOLD CV.

Metric Base Balanced Balanced x 2 Fixed 150 Fixed 400 SMOTE CTGAN
Accuracy | 91.49 (1.03) | 93.05 (0.81) 92.39 (0.89) 92.45 (1.01) | 92.75 (1.34) | 90.71 (1.03) | 91.73 (1.11)
F1-score 88.13 (1.31) | 91.01 (1.02) 89.97 (0.96) 90.08 (1.31) | 90.38 (1.72) | 86.48 (1.35) | 88.85 (1.46)
Precision | 92.57 (1.13) | 92.91 (0.87) 92.16 (1.05) 92.74 (1.27) | 92.98 (1.54) | 90.97 (1.14) | 91.23 (1.17)

Recall 86.40 (1.32) | 89.85 (1.12) 88.78 (0.94) 88.69 (1.29) | 89.00 (1.78) | 85.06 (1.31) | 87.77 (1.48)

varies depending on the amount of synthetic data added. In
particular, for Balanced, the total number of training data is
1956 data points, for Balanced x 2, the total number of training
data is 3904 data points, for Fixed 150, the total number of
training data is 1804 data points, and for Fixed 400, the total
number of training data is 2804 data points.

We consider two state-of-the-art baselines, namely, CTGAN
and SMOTE, that add synthetic data to the training set and
balance the per-class representation. Therefore, in terms of
the number of data points in the training set, they correspond
to the Balanced scenario.

We compare all approaches (CVAE, SMOTE, and CTGAN)
in case of Base and Mix in terms of i) Accuracy, ii) macro F1-
score, iii) Precision, and iv) Recall (see Table II), and per-class
F1-score (Table III) to quantify the benefit of augmenting real
data with synthetic data. We report means and standard errors
over 5-fold cross-validation.

In the following, we first compare the different flavors of
CVAE, i.e., Balanced, Balanced x2, Fixed 150, and Fixed 400.
We then compare the best-performing CVAE to two state-of-
the-art baselines: CTGAN and SMOTE.

1) CVAE for synthetic data generation: Table II shows that
Mix outperforms Base across all metrics, for all scenarios of
CVAE. The main takeaway from this observation is that CVAE
improves the classifier’s performance by adding synthetically
generated data to the training set. In the following, we com-
ment the numerical results in greater detail.

FI-score. Comparing the various scenarios of data augmen-
tation with CVAE, we observe that Balanced (ensuring all
classes are equally represented) achieves the best performance,
e.g., improves the classifier’s F1-score by 2.88% in case of Mix
compared to Base.

To illustrate the impact of this improvement, we quantify it
in the absolute number of number of correct classifications. For
example, in a scenario of 50 microwave links and an alarm
report every 15 minutes, there is an upper bound of 72000
samples to be classified daily. Even though it is expected that
not every 15-minute window will report an alarm, in practice,
such improvement in the Fl-score leads to hundreds of addi-
tional correct classifications. From an industrial perspective,
this translates to significant savings in the maintenance costs.

In contrast, we observe that when adding an excessive
number of synthetic data, e.g., Balanced x 2, the model will
perform worse than Balanced. This illustrates that adding
synthetic data to the training set does not necessarily improve
the generalization performance on the test set. Indeed, while
extending a dataset with new real measurements is always

beneficial, there is no a-priori guarantee that adding synthetic
data will improve the performance of an ML model.

Let us now focus in Table III on the per-class F1-score for
the Base and the Mix models. We consider that the per-class
F1-score allows us to quantify the impact of adding synthetic
data for each class.

Class-2. Observing the Fl-score of Class-2 is particularly
important, as in this class we removed 80% of training
data points, simulating a scenario of extreme data scarcity.
Indeed, data scarcity in Class-2 is reflected in the Fl-score
of the Base model, with an Fl-score less than 73%. Adding
synthetically generated data significantly improves the F1-
score by up to 8%. Comparing the various synthetic data
generation strategies, we observe that balancing the dataset
so that all classes are equally represented in the training set
leads to the best performance.

Similarly, for other classes (Class-0, Class-1, and Class-3),
we observe that the Mix model outperforms the Base model
augmenting real data with synthetic data.

We conducted the same analysis in the case of Categorical
alarms and concluded that data augmentation improves the F1-
score of the Mix model by around 3% compared to the Base
model. For brevity, such results are not included in the paper.

We conclude that balancing the representation of classes
in the training dataset, i.e., CVAE in the case of Balanced,
leads to the best test set performance. Therefore, we compare
this scenario to state-of-the-art CTGAN and SMOTE that also
re-balance the training dataset, i.e., all classes have the same
number of data points.

2) CVAE vs Baselines: We compare Balanced in the case
of CVAE with SMOTE and CTGAN and make the following
observations. First, we observe the impact of adding synthet-
ically generated data to the training set by comparing Mix
and Base in the case of SMOTE. Table II shows that Base
outperforms Mix across all metrics, e.g., Mix has a better F1-
score by almost 2% compared to Base. Moreover, looking
into the per-class Fl-score, we notice that, especially for
the underrepresented Class-2, adding synthetically data via
SMOTE actually degrades the Fl-score by 5% (from 73%
to 68%). The takeaway of these numerical evaluations is
that adding synthetic data that does not truthfully represent
the real data may lead to performance degradation in the
test set. This proves that having more data in the training
dataset (in a scenario when real data are augmented with
synthetically generated data) does not necessarily improve
the classifier’s generalization performance. Finally, comparing
CVAE to SMOTE, we observe that CVAE is significantly

TABLE III
PER-CLASS F1-SCORE FOR BASE AND MIX MODELS FOR CVAE, SMOTE AND CTGAN. FOR CVAE, WE REPORT FOUR CASES OF DATA GENERATION:
1) BALANCED, 11) BALANCED X2, 111) FIXED 150, AND 1V) FIXED 400. WE REPORT MEANS AND STANDARD ERRORS OVER 5-FOLD CV.

F1-score Base Balanced Balanced x 2 Fixed 150 Fixed 400 SMOTE CTGAN

Class-0 96.13 (0.76) | 96.32 (0.78) 96.32 (0.96) 95.73 (0.95) | 96.20 (0.95) | 96.05 (0.92) | 95.61 (1.01)
Class-1 93.31 (1.03) | 94.12 (0.73) 93.63 (1.21) 93.67 (0.86) | 93.79 (1.14) | 93.18 (1.09) | 93.88 (1.15)
Class-2 72.99 (2.51) | 80.95 (2.45) 78.14 (1.82) 78.49 (3.01) | 78.69 (3.47) | 67.54 (2.79) | 75.61 (3.70)
Class-3 90.09 (1.49) | 92.64 (0.89) 91.79 (0.82) 92.42 (1.17) | 92.85 (1.68) | 89.14 (1.25) | 90.29 (1.38)

better, as it always improves classifier performance by adding
synthetically generated data to the training set.

Second, in the case of CTGAN, we notice that the clas-
sifier’s performance when adding synthetic data, i.e., Mix
scenario, is either similar or slightly better than when only
real data are used, i.e., Base scenario. In particular, in Table II,
we observe an improvement of 0.24% in Accuracy and 0.72%
in Fl-score. In terms of the per-class Fl-score, in Table III,
we observe that for Class-2 (being the least represented class),
CTGAN ensures an F1-score improvement by 2.62% when the
classifier is trained with mixed (real+synthetic) data compared
to when the classifier is trained with real data only. For the
other classes, the performance is comparable, e.g., CTGAN
ensures an improvement by 0.57% in the case of Class-1. We
clearly see that CTGAN outperforms SMOTE, as it preserves
or improves the classifier’s performance when adding synthetic
data to the training set. However, the performance improve-
ment of CTGAN is inferior compared to CVAE, as CVAE
improves the Fl-score by 8% in the case of Class-2.

VI. CONCLUSION AND FUTURE WORK

Motivated by the high operational costs required for col-
lecting and annotating data, we proposed two Data-Centric
approaches for ML-based hardware-failure identification in
microwave networks: offline dataset augmentation with CVAE,
and online data collection guided by BUAL.

Our main takeaway is that Data-Centric approaches are
mandatory for ensuring time and cost-efficient deployment
of robust ML models for failure management in microwave
networks. Quantitatively, we have demonstrated that BUAL
achieves the best-known level of test-set performance with
4.5x fewer training samples, which translates into proportional
savings in terms of manual labeling time and waiting time
before deployment (three days vs. two weeks). Moreover, we
illustrated that synthetically augmenting an offline dataset with
CVAE-generated synthetic data improves the F1-score by 2.5%
in a scenario characterized by extreme data scarcity (only a
few tens of samples for the least-represented class).

We note that for other applications, e.g., when other mi-
crowave vendors and operators are considered, our proposed
solution might not necessarily work as a ’black-box solution’,
and further adjustment might be needed. For instance, in
scenarios of data abundance, e.g., over 100k data points, the
PCA decomposition and the repeated KMeans clustering in
BUAL might not scale very well. Moreover, for synthetic data
generation, large datasets would make it feasible to leverage
complex CTGANSs instead of our CVAE. Nevertheless, we
argue that our empirical findings can be practically useful for

many problems in ML for communications networks where
deployment costs are dominated by data annotation.

Possible future research directions leveraging this dataset
include the development of Online Learning approaches by
considering the hardware failure monitoring data as a time se-
ries. The goal would be to build real-time processing pipelines
for monitoring data and promptly flagging any unknown,
anomalous behavior. As a result, even in case of unexpected
failure events, the time-to-repair will be kept to a minimum.

Lastly, we plan to make public, for the first time to the
best of our knowledge, a high-quality dataset for failure
identification in microwave networks collected from a real,
currently operating microwave network. We hope that our
contribution will open up new research directions in the field
of ML for microwave failure management, and will serve as a
benchmark dataset for future data-driven failure management
frameworks.

REFERENCES

[1] B. Shariati, M. Ruiz, J. Comellas, and L. Velasco, “Learning from
the optical spectrum: Failure detection and identification,” Journal of
Lightwave Technology, vol. 37, no. 2, pp. 433-440, 2019.

[2] F. Musumeci, C. Rottondi, A. Nag, I. Macaluso, D. Zibar, M. Ruffini,
and M. Tornatore, “An overview on application of machine learning
techniques in optical networks,” IEEE Communications Surveys &
Tutorials, vol. 21, no. 2, pp. 1383-1408, 2019.

[3] F. Musumeci et al., “Supervised and semi-supervised learning for failure
identification in microwave networks,” IEEE Transactions on Network
and Service Management, vol. 18, no. 2, pp. 1934-1945, 2021.

[4] D.Zha, K.-H. Lai, F. Yang, N. Zou, H. Gao, and X. Hu, “Data-centric ai:
Techniques and future perspectives,” in Proceedings of the 29th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, ser.
KDD ’23. New York, NY, USA: Association for Computing Machinery,
2023, p. 5839-5840.

[5] S. Kliger, S. Yemini, Y. Yemini, D. Ohsie, and S. Stolfo, A Coding

Approach to Event Correlation. Boston, MA: Springer US, 1995, pp.

266-277.

H. Wietgrefe et al., “Using neural networks for alarm correlation in

cellular phone networks,” in International Workshop on Applications of

Neural Networks to Telecommunications (IWANNT). Citeseer, 1997,

pp. 248-255.

P. Szilagyi and S. Novaczki, “An automatic detection and diagnosis

framework for mobile communication systems,” IEEE Transactions on

Network and Service Management, vol. 9, no. 2, pp. 184-197, 2012.

P. Casas, P. Fiadino, and A. D’Alconzo, “Machine-learning based ap-

proaches for anomaly detection and classification in cellular networks,”

in 8th Traffic Monitoring and Analysis (TMA2016) Workshop, 04 2016.

F. Ahmed, J. Erman, Z. Ge, A. X. Liu, J. Wang, and H. Yan, “Detecting

and localizing end-to-end performance degradation for cellular data

services based on tcp loss ratio and round trip time,” IEEE/ACM

Transactions on Networking, vol. 25, no. 6, pp. 3709-3722, 2017.

[10] J. Wu, P. P. C. Lee, Q. Li, L. Pan, and J. Zhang, “Cellpad: Detecting
performance anomalies in cellular networks via regression analysis,” in
2018 IFIP Networking Conference (IFIP Networking) and Workshops,
2018, pp. 1-9.

[6

=

[7

—

[8

[

[9

[t

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

(30]

[31]

F. Lateano, O. Ayoub, F. Musumeci, and M. Tornatore, “Machine-
learning-assisted failure prediction in microwave networks based on
equipment alarms,” in 2023 19th International Conference on the Design
of Reliable Communication Networks (DRCN), 2023, pp. 1-7.

O. Ayoub et al., “Explainable artificial intelligence in communication
networks: A use case for failure identification in microwave networks,”
Computer Networks, vol. 219, p. 109466, 2022.

O. Ayoub, F. Musumeci, F. Ezzeddine, C. Passera, and M. Tornatore,
“On using explainable artificial intelligence for failure identification in
microwave networks,” in 2022 25th Conference on Innovation in Clouds,
Internet and Networks (ICIN), 2022, pp. 48-55.

L. Pan, J. Zhang, P. P. Lee, M. Kalander, J. Ye, and P. Wang, ‘“Proactive
microwave link anomaly detection in cellular data networks,” Computer
Networks, vol. 167, p. 106969, 2020.

A. Shahraki, M. Abbasi, A. Taherkordi, and A. D. Jurcut, “Active
learning for network traffic classification: A technical study,” IEEE
Transactions on Cognitive Communications and Networking, vol. 8,
no. 1, pp. 422-439, 2022.

Q. Xu and R. Zheng, “When data acquisition meets data analytics:
A distributed active learning framework for optimal budgeted mobile
crowdsensing,” in /[EEE INFOCOM 2017 - IEEE Conference on Com-
puter Communications, 2017, pp. 1-9.

L. Grinsztajn, E. Oyallon, and G. Varoquaux, “Why do tree-based
models still outperform deep learning on typical tabular data?” in Thirty-
sixth Conference on Neural Information Processing Systems Datasets
and Benchmarks Track, 2022.

R. Shwartz-Ziv and A. Armon, “Tabular data: Deep learning is not all
you need,” in 8th ICML Workshop on Automated Machine Learning
(AutoML), 2021.

Y. Gal, R. Islam, and Z. Ghahramani, “Deep bayesian active learning
with image data,” in International conference on machine learning.
PMLR, 2017, pp. 1183-1192.

V.-L. Nguyen, M. H. Shaker, and E. Hiillermeier, “How to measure un-
certainty in uncertainty sampling for active learning,” Machine Learning,
vol. 111, no. 1, pp. 89-122, 2022.

E. Ayanoglu, K. Davaslioglu, and Y. E. Sagduyu, “Machine learning in
nextg networks via generative adversarial networks,” IEEE Transactions
on Cognitive Communications and Networking, vol. 8, no. 2, pp. 480-
501, 2022.

H. Navidan, P. F. Moshiri, M. Nabati, R. Shahbazian, S. A. Ghorashi,
V. Shah-Mansouri, and D. Windridge, “Generative adversarial networks
(gans) in networking: A comprehensive survey & evaluation,” Computer
Networks, vol. 194, p. 108149, 2021.

Y. Yang, Y. Li, W. Zhang, F. Qin, P. Zhu, and C.-X. Wang, “Generative-
adversarial-network-based wireless channel modeling: Challenges and
opportunities,” IEEE Communications Magazine, vol. 57, no. 3, pp. 22—
27, 2019.

I. William H Clark, S. Hauser, W. C. Headley, and A. J. Michaels,
“Training data augmentation for deep learning radio frequency systems,”
The Journal of Defense Modeling and Simulation, vol. 18, no. 3, pp.
217-237, 2021.

K. Davaslioglu and Y. E. Sagduyu, “Generative adversarial learning
for spectrum sensing,” in 2018 IEEE International Conference on
Communications (ICC), 2018, pp. 1-6.

B. Tang, Y. Tu, Z. Zhang, and Y. Lin, “Digital signal modulation
classification with data augmentation using generative adversarial nets
in cognitive radio networks,” IEEE Access, vol. 6, pp. 15713-15722,
2018.

M. Massaoudi, S. S. Refaat, and H. Abu-Rub, “Intrusion detection
method based on smote transformation for smart grid cybersecurity,”
in 2022 3rd International Conference on Smart Grid and Renewable
Energy (SGRE), 2022, pp. 1-6.

M. Sun, H. Qian, K. Zhu, D. Guan, and R. Wang, “Ensemble learning
and smote based fault diagnosis system in self-organizing cellular
networks,” in GLOBECOM 2017 - 2017 IEEE Global Communications
Conference, 2017, pp. 1-6.

S. A. Abdulkareem, C. H. Foh, F. Carrez, and K. Moessner, “Smote-
stack for network intrusion detection in an iot environment,” in 2022
IEEE Symposium on Computers and Communications (ISCC), 2022, pp.
1-6.

A. Tesfahun and D. L. Bhaskari, “Intrusion detection using random
forests classifier with smote and feature reduction,” in 2013 International
Conference on Cloud & Ubiquitous Computing & Emerging Technolo-
gies, 2013, pp. 127-132.

M. Razghandi, H. Zhou, M. Erol-Kantarci, and D. Turgut, “Variational
autoencoder generative adversarial network for synthetic data generation

(32]

(33]

[34]

[35]

[36]

[37]

(38]

(391

[40]

[41]

[42]
[43]
[44]
[45]

[46]

in smart home,” in ICC 2022 - IEEE International Conference on
Communications, 2022, pp. 4781-4786.

Y. Qu, H. Ma, Y. Jiang, L. Wang, and J. Yu, “A network data
reinforcement method based on the multiclass variational autoencoder,”
Security and Communication Networks, vol. 2022, pp. 1-10, 07 2022.
L. Z. Khan, J. Pedro, N. Costa, L. De Marinis, A. Napoli, and N. Sambo,
“Data augmentation to improve performance of neural networks for
failure management in optical networks,” Journal of Optical Commu-
nications and Networking, vol. 15, no. 1, pp. 57-67, 2023.

L. Xu, M. Skoularidou, A. Cuesta-Infante, and K. Veeramachaneni,
“Modeling tabular data using conditional gan,” Advances in neural
information processing systems, vol. 32, 2019.

N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “Smote:
synthetic minority over-sampling technique,” Journal of artificial intel-
ligence research, vol. 16, pp. 321-357, 2002.

L. Xu, M. Skoularidou, A. Cuesta-Infante, and K. Veeramachaneni,
“Modeling tabular data using conditional gan,” Advances in neural
information processing systems, vol. 32, 2019.

D. Elreedy and A. F. Atiya, “A comprehensive analysis of synthetic
minority oversampling technique (smote) for handling class imbalance,”
Information Sciences, vol. 505, pp. 32—64, 2019. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0020025519306838
A. Malinin, L. Prokhorenkova, and A. Ustimenko, “Uncertainty in gra-
dient boosting via ensembles,” in International Conference on Learning
Representations, 2021.

S. Lloyd, “Least squares quantization in pcm,” IEEE transactions on
information theory, vol. 28, no. 2, pp. 129-137, 1982.

G. Citovsky et al., “Batch active learning at scale,” in Advances in
Neural Information Processing Systems, A. Beygelzimer, Y. Dauphin,
P. Liang, and J. W. Vaughan, Eds., 2021.

J. T. Ash, C. Zhang, A. Krishnamurthy, J. Langford, and A. Agar-
wal, “Deep batch active learning by diverse, uncertain gradient lower
bounds,” in International Conference on Learning Representations,
2020.

K. Pearson, “On lines and planes of closest fit to systems of points in
space,” The London, Edinburgh, and Dublin philosophical magazine and
Journal of science, vol. 2, no. 11, pp. 559-572, 1901.

D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” 2013.
A. Pagnoni, K. Liu, and S. Li, “Conditional variational autoencoder for
neural machine translation,” arXiv preprint arXiv:1812.04405, 2018.

F. Pedregosa et al., “Scikit-learn: Machine learning in Python,” Journal
of Machine Learning Research, vol. 12, pp. 2825-2830, 2011.

T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting system,”
in Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, ser. KDD ’16. New York, NY,
USA: ACM, 2016, pp. 785-794.

