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Nicola Di Cicco∗, Jacopo Talpini†, Mëmëdhe Ibrahimi∗, Marco Savi†, Massimo Tornatore∗,
∗Department of Electronics, Information and Bioengineering (DEIB), Politecnico di Milano, Italy

†Department of Informatics, Systems and Communication (DISCo), University of Milano-Bicocca, Italy

Abstract—We consider the problem of forecasting the Quality-
of-Transmission (QoT) of deployed lightpaths in a Wavelength
Division Multiplexing (WDM) optical network. QoT forecasting
plays a determinant role in network management and planning,
as it allows network operators to proactively plan maintenance
or detect anomalies in a lightpath. To this end, we leverage
Bayesian Recurrent Neural Networks for learning uncertainty-
aware probabilistic QoT forecasts, i.e., for modelling a probability
distribution of the QoT over a time horizon. We evaluate our
proposed approach on the open-source Microsoft Wide Area Net-
work (WAN) optical backbone dataset. Our illustrative numerical
results show that our approach not only outperforms state-of-the-
art models from literature, but also predicts intervals providing
near-optimal empirical coverage. As such, we demonstrate that
uncertainty-aware probabilistic modelling enables the application
of QoT forecasting in risk-sensitive application scenarios.

Index Terms—Quality-of-Transmission, Machine Learning,
Uncertainty, Regression, Forecasting

I. INTRODUCTION

In the era of 5G-and-beyond communications, optical net-
works are expected to support applications requiring unprece-
dented capacity, low latency, and high reliability. As such,
innovative network design and optimization techniques are
required to cope with such tight requirements.

Traditionally, optical network design was performed by em-
ploying canonical optimization techniques, e.g., by leveraging
closed-form formulas for physical layer modeling or heuristic
approaches for resource allocation. More recently, Machine
Learning (ML)-based approaches have been demonstrated to
be accurate, reliable, and fast in performing the same tasks
while meeting network designers’ needs [1]. In the last few
years, several ML-based optimization approaches have been
proposed in the area of optical networking, e.g., to estimate
QoT of unestablished lightpaths [2], [3], for failure manage-
ment [4], for traffic prediction [5] and for QoT forecast of
already established lightpaths [6]. More specifically, while a
handful of works have employed ML-based probabilistic ap-
proaches for QoT estimation of unestablished lightpaths, e.g.,
[2], [3], [7], no previous work on QoT forecasting employs
an uncertainty-aware probabilistic approach, but rather only
provide point estimates, which do not provide any information
on the uncertainty of the prediction itself.

In this paper, we investigate the problem of forecast-
ing QoT of deployed lightpaths in a Wavelength Division
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Fig. 1. SNR values over time of a single illustrative lightpath from the
publicly-available Microsoft WDM optical backbone dataset. SNR values are
averaged over windows of six hours.

Multiplexed (WDM) network. While predicting the QoT of
unestablished lightpaths has been significantly investigated
in recent years [8], the problem of forecasting the QoT of
already established lightpaths over a time horizon is a less
investigated topic. In particular, in contrast to previous works
which provide only point-estimate forecasts, we leverage
Bayesian Recurrent Neural Networks to forecast a probability
distribution of established lightpaths’ QoT over a time horizon.

The challenge of forecasting lightpaths’ QoT comes from
the fact that the optical transmission medium is very sensitive
to environmental conditions, e.g., temperature changes, wind,
mechanical movements of the fiber, and vibrations, to the point
that it has been proven to be a reliable sensing instrument [9].
In this context, QoT forecasting allows network operators
to estimate fast time-varying effects on a QoT metric (e.g.,
on Q-factor, Bit-Error Rate (BER) or Signal-to-Noise Ratio
(SNR)). Since QoT may vary significantly over time due to
fast time-varying effects, performing a probabilistic estimation
of the channel’s behavior allows network operators to assess
more accurately the uncertainty associated with the estimation,
thus allowing to perform more informed risk evaluations and
take the corresponding measures accordingly. For example,
a network operator may leverage probabilistic forecasts to
estimate the probability of the QoT remaining above a desired
performance level during its lifetime, thus setting safe but
tight expectations when signing Service Level Agreements.
Another application of interest is anomaly detection: when
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one or multiple QoT measurements fall outside the predicted
intervals of high-probability, a network operator can infer that
the lightpath has deviated from its “normal” behavior, and
thus plan preventive maintenance prior to the occurrence of
severe faults. While some works have utilized probabilistic
QoT estimation of unestablished lightpaths, e.g., [2], [3], [7],
to the best of our knowledge, this is the first work that
addresses lightpath QoT forecasting through an uncertainty-
aware probabilistic estimation lens.

As a motivating example, Fig. 1 illustrates the SNR values
of a lightpath from a real-world publicly-available dataset [10].
We can observe that the lightpath’s SNR values significantly
vary over time, with a dynamic range of approximately 1dB.
Most importantly, we can deduce that, in general, the temporal
dynamics of the SNR cannot only be imputed to random zero-
mean noise. While a physical justification on why these oscilla-
tions happen over time is at present an open research question,
our goal is to leverage Machine Learning for modeling in a
probabilistic way how these oscillations happen over time.

Our illustrative experimental results on the open-source
Microsoft dataset [10] show that our probabilistic forecasts
yield more accurate mean QoT values than state-of-the-art
point-estimate approaches from literature. Moreover, we show
that our estimated confidence intervals provide good empirical
coverage of the ground-truth QoT values. We therefore pave
the road for the application of QoT forecasting in risk-sensitive
applications, such as estimating compliance to Service Level
Agreements and anomaly detection.

The remainder of the paper is organized as follows. In
Section II, we revise some relevant related works, emphasizing
the differences to our proposed approach. In Section III,
we describe the proposed uncertainty-aware QoT forecasting
solution. In Section IV, we describe the dataset utilized. In
Section V we provide and discuss the numerical results, and
conclude the paper by highlighting the main takeaways and
lessons learned in Section VI.

II. RELATED WORKS

The application of Machine Learning to optical networks
has been receiving considerable attention as it enables auto-
mated network (re)configuration and fast decision-making by
leveraging historical data.

We make use of a publicly-available Microsoft WDM
backbone dataset [10]. Several works analyzed this dataset,
e.g., [10]–[12], for investigating optical layer failures and
capacity gains through elastic modulation.

In [6] authors provide a tutorial on lightpath QoT fore-
casting with the objective of identifying the most suitable
ML techniques to address the challenge of QoT forecasting.
Authors make use of historical data from three separate
datasets and compare the performance of four variants of
neural networks: Long Short-Term Memory (LSTM), Encoder-
Decoder LSTM, Gated Recurrent Unit (GRU), and Multilayer
Perceptron (MLP). Numerical results show that QoT forecast-
ers based on linear regression and MLP can outperform more
complex RNN models. Additionally, aggregate performance

metrics illustrate that outliers in the training data can signifi-
cantly impact the final performance.

Several other works have investigated the application of
ML-based approaches to perform QoT forecasting [13]–[16].
In [14] authors propose an encoder-decoder LSTM to forecast
the SNR of an established lightpath. The authors show how
an operating lightpath might experience SNR variations up
to 3 dB during its operation, possibly leading to outages.
Results compare GRU to LSTM in terms of Root Mean
Square Error (RMSE), and show that the performance of the
employed model depends on the forecast horizon. In [15]
authors employ a Convolutional Neural Network for QoT
forecasting over forecast horizons up to 24 hours. The authors
show that it is possible to capture and correctly predict the
temporal lightpath SNR changes 24 hours before. Similarly,
in [13] authors propose MLP and LSTM deep neural network
models to forecast the minimum QoT of deployed lightpaths
over time horizons up to 72 hours. Finally, in [16] authors
propose two multivariate neural networks based on LSTM and
GRU showing that they outperform their counterpart univariate
models in terms of Absolute Maximum Error (AME).

While previous literature considers point-estimate forecasts,
our proposed forecaster models the probability distribution of
lightpaths’ QoT. By characterizing lightpaths’ QoT as a proba-
bility distribution, a network operator is able to safely estimate
the fast time-varying behavior of established lightpaths over
arbitrary time horizons. Moreover, previous literature focuses
on forecasting QoT values for single lightpaths only. In this
work, we propose a multi-input multi-output model that jointly
forecasts the QoT of multiple lightpaths over time. As such,
our goal is to learn not only the temporal behavior of single
lightpaths, but also the temporal correlations between channels
and optical links in the WDM network.

III. UNCERTAINTY-AWARE QOT FORECASTING

Our problem statement is as follows: given C input QoT
time-series x1:T of T time-steps, each one from a different
lightpath, our goal is to forecast QoT values ŷT+1:T+H up to
H time-steps in the future for each lightpath.

While ML-based QoT forecasters have been proposed in
literature, they consider only point predictions, which do not
provide information on their predictive uncertainty (i.e., in the
form of confidence intervals) as pointed out in Section II. In
the context of QoT forecasting, truthful confidence intervals
allow an operator to (probabilistically) infer credible ranges for
the QoT values. In addition, in the context of anomaly detec-
tion, truthful confidence intervals allow for early identification
of potentially anomalous trends, with fine-grained control on
the ratio between true anomalies and false alarms. Overall,
we argue that probabilistic outputs are non-negotiable for real-
world, risk-sensitive applications of ML in optical networks.

Moreover, while previous approaches focus on forecasting
QoT for a single lightpath, we consider a model that takes as
an input multiple QoT time-series, and jointly forecasts QoT
values for all of the considered lightpaths. As such, the model
can learn and exploit correlations between different lightpaths.



Therefore, our objective is to develop a probabilistic QoT
multi-input multi-output forecaster providing truthful proba-
bilistic predictions. To this end, we leverage Bayesian Recur-
rent Neural Networks (RNNs) for implementing our model.
Bayesian Neural Network models allow for estimating the
model’s predictive uncertainty, while RNN models allow for
efficient learning on QoT time-series data.

A. Background on Bayesian Neural Networks

Traditional Neural Networks (NNs) are not able to capture
predictive uncertainty [17], a crucial aspect for many risk-
sensitive applications. However, it is possible to tackle this
issue in a principled way by coupling NNs with Bayesian
probability theory, leading to the formulation of Bayesian
Neural Networks (BNNs). The most distinguishing property
of a BNN is marginalization, i.e., rather than using a single
set of weights ŵ determined at the end of the training phase,
BNNs rely on the computation of the predictive distribution
for a given input x, as follows [18]:

p(y|x,D) =

∫
p(y|x,w)p(w|D)dw (1)

where: p(w|D) is the posterior distribution of the weights of
the considered model (i.e. a NN), given a training dataset D =
{(xi; yi)}Ni=1 of input-output pairs. The posterior distribution
over the weights in the previous equation allows for capturing
the model uncertainty, arising from the uncertainty associated
with the parameters of the model, given the training dataset.

Unfortunately, the exact evaluation of the predictive dis-
tribution is computationally intractable for neural networks of
practical size. To get around this problem, several approximate
inference methods were proposed. Most approaches rely on
Variational Inference for finding a tractable approximation to
the Bayesian posterior distribution of the weights [19] or on
Deep Ensembles, where the same NN architecture is trained
multiple times and then the resulting models are averaged [18].

A different approach for approximating the Bayesian pre-
dictive distribution, named Monte-Carlo (MC) Dropout, was
first proposed in [17] for NNs with Dropout layers.

We decided to employ MC-Dropout since it is efficient and
easy to implement, as it does not require any change to an
existing NN architecture. MC-Dropout is based on keeping
Dropout layers activated also during the inference phase,
randomly deactivating (dropping out) hidden units by sampling
from a Bernoulli distribution N times, thus generating an
ensemble of N different models. To summarize the ensemble
predictions from MC-Dropout for a given input x, it is possible
to rely on the mean of the predictive distribution, obtained by
averaging multiple stochastic forward passes [17]:

ŷ ≡ Ep(y|x,D)[y] ≈
1

N

N∑
i=1

f(x;wi) (2)

where f(x;wi) denotes the i-th forward pass for a given NN.
Moreover, other than providing a single-point estimate,

BNNs can also quantify the uncertainty associated with each
prediction. For regression problems, we estimate the predictive
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Fig. 2. Proposed neural network architecture. The LSTM encoder produces
a fixed-size context vector from the input QoT time-series x1:T . The LSTM
decoder recursively produces the forecasted QoT time-series ŷT+1:T+H .

uncertainty as the variance of the predictive distribution. In
particular, the variance of the predictive distribution can be
decomposed via the law of total variance [17], [20], as follows:

Varp(y|x,D)[y]︸ ︷︷ ︸
Total Uncertainty

= Varp(w|D)

[
Ep(y|x,w)[y]

]︸ ︷︷ ︸
Model Uncertainty

+ σ2︸︷︷︸
Inherent Noise

(3)

This equation shows that the total variance (i.e., the prediction
uncertainty) can be decomposed into two terms: the first one
captures the model (or epistemic) uncertainty, while the second
one the inherent noise on the target values.

In particular, for estimating the model uncertainty via MC-
Dropout, one can compute the sample variance of the consid-
ered N stochastic forward passes [17], as follows:

Varp(w|D)

[
Ep(y|x,w)[y]

]
≈ 1

N

N∑
i=1

(ŷ − f(x;wi))
2 (4)

For estimating the inherent noise level, we adopt the ap-
proach proposed in [20]. Specifically, for a given channel,
denoting the mean i-th prediction as ŷ and the corresponding
ground-truth target as yi, the inherent noise is estimated
through the variance of the residuals as follows:

σ2 ≈ 1

V

V∑
i=1

(yi − ŷi)
2 (5)

where V is the number of points used to train the model.

B. Proposed model architecture

Our neural network architecture is illustrated in Fig. 2.
We implemented a classical encoder-decoder architecture with
multiple LSTM layers. Briefly, an LSTM layer extends a
standard RNN layer, such that each ordinary recurrent node is
instead replaced by a memory cell. Each memory cell contains
an internal state (i.e., a node with a self-connected recurrent
edge of fixed weight) which ensures that gradients can flow
across many time-steps without vanishing [21]. At each time-
step t, an LSTM layer outputs a hidden state ht, encoding the
working memory of the RNN, and a cell state ct, encoding
the long-term memory of the LSTM.

Our encoder-decoder architecture, known in literature as
Seq2Seq [22], is well suited for extracting meaningful rep-
resentations from multiple input time-series. The encoder and
the decoder networks consist both of multiple LSTM layers,
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Fig. 3. Standard Dropout and Variational Dropout in an LSTM layer. Masked
inputs are depicted in black. In Variational Dropout, recurrent inputs (i.e.,
hidden state and cell state) are also masked, and the same mask is kept for
the whole duration of the input sequence.

with the decoder having an additional Multi-Layer Perceptron
(MLP) head that outputs the final forecast. The encoder
network maps the input SNR time-series x1:T ∈ RC×T to
a context vector of fixed size (i.e., the last hidden state
and cell state of the encoder LSTM network), while the
decoder network recursively predicts the future SNR time-
series ŷT+1:T+H ∈ RC×H from the context vector.

Additionally, to make our Seq2Seq architecture output
probabilistic predictions, we exploited a particular implemen-
tation of the general MC-Dropout approach, described in
the previous subsection, called Variational Dropout [23] and
specifically designed for RNNs. Variational Dropout randomly
masks (drops) some network units with their inputs, output,
and recurrent connections at each time-step [23]. As shown in
Fig. 3, in contrast to standard Dropout, Variational Dropout
applies a mask also on the recurrent connections, and it keeps
the same mask for each time-step of the input sequence. As
shown in [23], a recurrent network with Variational Dropout
is equivalent to an approximate Bayesian model. As for
MC-Dropout, mean predictions and predictive uncertainty are
estimated by aggregating multiple predictions over different
Dropout masks.

IV. DATASET DESCRIPTION

We consider an open-source dataset of traces from a Mi-
crosoft optical WDM backbone [10]. The dataset aggregates
measurements from 4000 frequency channels over 115 optical
paths. The exact physical layer topology is not disclosed.
Each frequency channel includes four main features, namely
i) signal Q-factor, ii) transmit power, iii) chromatic dispersion,
and iv) polarization mode dispersion. Measurements were col-
lected at 15-minute sampling intervals over a 14-month obser-
vation period. As in [13], we considered only the time-series
regarding the Q-factor, as this quantity is highly correlated
with the SNR. Specifically, since all lightpaths in the dataset
employ PDM-QPSK, the reported Q-values are approximately
equivalent to the corresponding SNR values [24].

A. Data preprocessing

An exploratory analysis of the time-series revealed the pres-
ence of several outliers. We identified outliers by looking at
samples falling beyond ∼ 4σ-equivalent from the median value
and we replaced them with linear interpolation, as proposed in
[13]. Moreover, we smoothed each time-series by taking the
mean over non-overlapping windows of 6 hours, to reduce
the noise without compromising the informational content.
The underlying assumption is that, during the window time
scale, we considered the physical properties of the network
as being nearly constant and that the observed variability
is due to only statistical fluctuations. Then, the dataset is
partitioned into 60% training, 20%, validation, and 20% testing
set, and standardized using the training data, so that each
feature distribution presents a zero mean and unit variance.
For training, each time-series has been divided into batches of
data having an observation window of 25 days and a target
series of 12.5 days, corresponding to T=100 and H=50 input
and output time-steps, respectively.

V. ILLUSTRATIVE NUMERICAL RESULTS

In this Section, we first illustrate the overall performance
of our QoT forecaster by comparing aggregate performance
metrics with a state-of-the-art baseline from the literature.
We then discuss the uncertainty estimation capabilities of our
forecaster by analyzing the quality (i.e., the empirical ground-
truth coverage) of the estimated confidence bands.

To analyze the capabilities of our approach to exploit
correlations between different channels and optical links, we
explored two different use cases.

Scenario A: we considered all the channels present in a
single optical link, for a total of C=50 channels. A trained
model can therefore be leveraged for monitoring all lightpaths
traversing the same location in the backbone network.

Scenario B: we randomly selected C=50 channels, each one
from a distinct optical link. A trained model can therefore be
leveraged for monitoring selected (potentially risk-sensitive)
lightpaths in different locations in the backbone network.

For both experimental scenarios, we found the best hyper-
parameters leveraging on the Tree Parzen Estimator (TPE)
Bayesian optimization algorithm implemented in the Optuna
library [25]. Specifically, our encoder-decoder architecture
consists of two LSTM layers with an embedding layer of
size 18. We trained our model for 400 epochs with minibatch
size 32 using the Huber loss [26]. The dropout rate was
set to 0.2, as suggested in [23]. This architecture has been
found to maximize the validation performance, with training
times of less than ten minutes on a Macbook Pro M1 CPU.
As a baseline, we consider the current state-of-the-art MLP-
based forecasting approach proposed in [13]. Our models were
implemented in PyTorch [27], and our source code is publicly
available at https://github.com/bonsai-lab-polimi/icc2023-qot

A. Aggregate performance metrics

We evaluate the performance of our model by computing
the average Mean Squared Error (MSE) and Mean Average
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TABLE I
TEST SET PERFORMANCE METRICS FOR SCENARIOS A AND B.

Scenario A

Horizon Our approach MLP [13]
MSE MAPE% MSE MAPE%

150h 0.0032 0.33 0.0041 0.37
300h 0.0029 0.32 0.0036 0.37
600h 0.0024 0.31 0.0032 0.36

Scenario B

Horizon Our approach MLP [13]
MSE MAPE% MSE MAPE%

150h 0.0050 0.45 0.065 1.02
300h 0.0053 0.46 0.110 1.25
600h 0.0054 0.47 0.107 1.36

Percentage Error (MAPE) in the test set over different forecast
horizons H , namely 150, 300, and 600 hours, corresponding
to 25, 50, and 100 forecasting time-steps, respectively.

We report test set aggregate performance in Table I. For both
considered scenarios, the averages from our probabilistic pre-
diction yield values much closer to the ground-truth compared
to the point-estimate forecasts that can be obtained using the
MLP proposed in [13]. Empirically, we observed that this is
because the MLP model, while providing reasonable forecasts
when the SNR is almost stationary, completely fails to model
more complex temporal patterns. Moreover, the MLP model
takes as an input the time-series pertaining to a single light-
path, hence it cannot learn to exploit the temporal correlations
between multiple lightpaths. Conversely, our proposed multi-
input multi-output LSTM model is able to disclose complex
temporal correlations in the input time-series, thus yielding
more robust point-estimate forecasts. Finally, we underline that
with our Seq2Seq approach we train a single model which
we test for multiple forecast horizons, whereas MLPs require
training different models for each forecast horizon, since
their output dimensionality is fixed. Therefore, our approach
generalizes well for forecast horizons different than training.

B. Quality of the predicted confidence intervals

Our probabilistic forecaster outputs not only a mean-value
prediction, but also confidence intervals in which the ground-
truth Q-value is presumed to lie. For estimating a confidence
interval, we modeled each output time-step in our predicted
forecast as a Normal distribution, with mean equal to the fore-
casted mean value, and variance equal to the total predictive
uncertainty, computed as per Eq. (3). The choice of the Normal
distribution makes the fewest assumptions and leads to the
most conservative estimates, given only the knowledge of the
mean and the variance [28] of the predictive distribution. We
therefore compute the predicted centered 68.26%, 90%, 95%
and 99% confidence interval, and we count the percentage of
ground-truth points that fall inside. For a perfect estimation,
we expect to observe on average, say, x% of ground-truth
points falling inside the predicted x% confidence intervals.

In Table II we report the average empirical coverage of our
confidence interval estimates averaged from both Scenario A

TABLE II
PREDICTED CONFIDENCE INTERVALS FOR SCENARIOS A AND B

Interval Range Ground-truth Coverage
Expected Empirical (A) Empirical (B)

µ± σ 68.26% 71.34% 65.54%
µ± 1.62σ 90% 90.41% 86.13%
µ± 1.96σ 95% 94.04% 92.21%
µ± 2.58σ 99% 98.39% 98,86%

and Scenario B. We observe that the predicted confidence in-
tervals provide a reasonable empirical coverage, demonstrating
that the proposed approach can indeed be used for predicting
truthful confidence intervals.

C. Illustrative applications

We conclude our experimental evaluation with potential
use cases for our forecast methodology. Namely, we consider
i) performance monitoring and ii) anomaly detection for in-
service lightpaths. Note that, apart from SNR drops of several
dBs [10], which are “true” anomalies (and can be clearly
isolated without the use of ML), the definition of anomaly is
ultimately application-specific. For the sake of our study, we
consider anomalous behaviors that qualitatively deviate from
a consolidated temporal trend.

Fig. 4a displays a forecast of a stable lightpath. While
the past SNR values exhibited multiple temporal trends, our
model was remarkably capable of outputting tight confidence
intervals around the ground-truth and capturing the inception
of a decreasing trend several time-steps in advance.

Fig. 4b displays a forecast on a lightpath that will likely
be experiencing an anomalous event (namely, a change of sta-
tionary state) in the future. We can observe that, as expected,
the anomalous ground-truth falls well outside the predicted
confidence intervals. In this context, a network operator may
define a threshold distance from the interval ranges, such that
observations exceeding that distance raise an alarm. After that,
the occurrence of n consecutive alarms may trigger a warning,
with a warning severity growing together with n.

VI. CONCLUSION

In this work, we proposed a novel uncertainty-aware ap-
proach for forecasting future QoT values in established light-
paths based on Bayesian RNNs. In particular, we illustrated
a multi-input multi-output Seq2Seq architecture for exploiting
the correlations between different frequency channels and fiber
links in the physical network. Numerical results on a real-
world dataset showed that not only our proposed approach
outperforms previous literature, but also predicts confidence
intervals providing reliable empirical coverage. Finally, we
illustrated how our probabilistic forecasts could be applied
for performance monitoring and anomaly detection. Future
work will investigate attention-based models for interpreting
correlations between different input QoT time-series.
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Fig. 4. Illustrative forecasts on a stable and an anomalous lightpath. The predicted mean forecast is represented by the solid orange line. Dark orange and
light orange bands represent the predicted standard deviations and 95% confidence intervals, respectively.
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