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Abstract—Quality-of-Transmission (QoT) regression of un-
established lightpaths is a fundamental problem in Machine
Learning applied to optical networks. Even though this problem
is well-investigated in current literature, many state-of-the-art
approaches either predict point-estimates of the QoT or make
simplifying assumptions about the QoT distribution. Because of
this, during lightpath deployment, an operator might take either
overly-aggressive or overly-conservative decisions due to biased
predictions. In this paper, we leverage state-of-the-art Gradient
Boosting Decision Tree (GBDT) models and recent advances in
uncertainty calibration to perform QoT probabilistic regression
for unestablished lightpaths. Calibration of a regression model
allows for an accurate modeling of the QoT Cumulative Distribu-
tion Function (CDF) without any prior assumption on the QoT
distribution. In our illustrative experimental results, we show
that our calibrated GBDT model’s predictions provide accurate
confidence interval estimates, even when only few samples per
lightpath configuration are available at training time.

Index Terms—Quality-of-Transmission, Machine Learning,
Regression, Lightpath, Estimation

I. INTRODUCTION

The introduction of coherent transmission and high-rate
transponders in optical networks have enabled a whole new
range of configurable transmission parameters to optimize
network performance, at the expense of increased network-
design complexity. In this context, a network design challenge
that has lately received noticeable attention is the estimation
of Quality-of-Transmission (QoT) of unestablished lightpaths.
The main challenge to accurately estimate lightpaths’ QoT
comes from the non-linear nature of signal propagation in
optical fibers and lack of complete knowledge of equipment
parameters. Traditionally, QoT estimation in optical networks
has been addressed using exact numerical solvers or margined
formulas, with both approaches having non-negligible short-
comings. Exact numerical solvers, e.g., the Split-Step Fourier
method [1f], are computationally heavy, while margined for-
mulas, e.g., the GN-model [2], are computationally fast but
lead to under-utilization of network resources.

An alternative to traditional approaches for QoT estimation
is the application of Machine Learning (ML). ML has proven
effective for solving network design problems [3]], among
which QoT estimation [4], [5]. ML-based approaches over-
come the shortcomings of both exact approaches and margined
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formulas by estimating lightpaths’ QoT in reasonable time and
by modelling the uncertainties not captured by the physical
layer models. Seminal works that adopt ML for QoT esti-
mation make use of ML-classification approaches [6]—[8]] and
aim to answer the following question: given a lightpath con-
figuration, is the Signal-to-Noise Ratio (SNR) above a given
threshold? However, a classification-based QoT estimation can
only provide limited information. In particular, a classification-
based QoT estimation does not allow to predict the SNR
distribution and as a result i) it does not provide information on
how far the predicted SNR is from the threshold and ii) it does
not tell if it is possible to upgrade the lightpath configuration,
e.g., from 100 Gbps DP-QPSK to 200 Gbps DP-16-QAM. An
alternative is to use regression-based approaches [9]-[12]. In
the context of QoT estimation, regression-based approaches
can be used with three different purposes: i) estimation of
the SNR distribution, i.e., quantifying if and how far the
SNR is from the threshold (which is pivotal in presence
of uncertainties introduced by fast time-varying penalties or
by crosstalk effects due to the dynamic allocation of alien
wavelengths), ii) probabilistic QoT modelling, i.e., estimating
SNR to capture unknown effects such as amplifier gain ripple
or connector losses with the objective of reducing design
margins (time-varying penalties margins are still assumed to be
fixed), and iii) estimation of the values of input parameters,
i.e., gathering SNR information to refine the knowledge of
input parameters (e.g., amplifier noise figure, nonlinear and
dispersion coefficient and fiber attenuation coefficient). Most
regression-based approaches, e.g., Refs. [9]-[12], estimate a
scalar value of SNR, i.e., they do not capture the uncertainty
associated to the SNR value due to fast time-varying penalties.
Additionally, works that estimate SNR distribution such as
[13] assume some prior knowledge about the SNR distribution,
estimating the moments of a skewed-Gaussian. Note that, the
QoT research problem has been investigated also in other areas
of research, e.g., ad-hoc networks [[14], however, applied in a
different context to the one studied in our work.

The novelty of our work and the research gap we ad-
dress lies in the fact that i) we do not assume any prior
knowledge on the SNR distribution, and, ii) we make use of
recently-proposed probabilistic regression models to estimate
the uncertainty associated with each prediction. We explore an
uncertainty calibration procedure [15] that allows to produce
accurate confidence intervals given a sufficient amount of i.i.d.
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Fig. 1. Machine Learning pipeline: Probabilistic Regression followed by Recalibration results in accurate predictions of the SNR distribution.

data. With proper calibration, the regression model is able
to accurately predict the SNR’s CDFs even when a limited
amount of samples per lightpath configuration are available
(as it is expected to happen in realistic network scenarios).
Indeed, one of the main challenges of applying ML approaches
in optical networks is data scarcity, since in practice it is not
very likely to have sufficient available SNR measurements for
every possible lightpath configuration.

II. RELATED WORK

ML-based QoT estimation has been investigated using
both classification and regression approaches. Several ML-
classification approaches for QoT estimation have been pro-
posed [6]—[8]], however, they provide no information about the
actual numerical value that the SNR can take. Hence, in the
following, we concentrate on those studies that have applied
regression approaches to QoT estimation.

In [9], the authors make use of ML-regression to reduce
design margins by estimating the penalties due to EDFA gain
ripple and filtering uncertainties at ROADM nodes. Similarly,
in [12f], the authors investigate reducing the amplifier power
profile and noise figure uncertainties by leveraging monitored
values of lightpaths’ SNR. In [10], the authors estimate
the uncertainties of various input parameters, e.g., amplifier
noise figure, nonlinear and dispersion coefficient, and fiber
attenuation coefficient, utilizing SNR of established lightpaths
to learn the network state and to train the parameters of
the analytical physical layer model, e.g., the GN-model for
estimating NLI impairments. In [[11]], the authors propose
a ML method exploiting realistic network monitoring data
and leveraging the physics behind light propagation to refine
two main parameters highly affecting QoT estimation: span
input/output lumped losses, and amplifier gain spectrum.

Compared to these works, we estimate the SNR distribution
and determine not only whether a lightpath configuration is
above/below threshold, but also enable making an informed
decision on lightpath deployment by leveraging the knowledge
on how close/far from the threshold is the SNR estimation.
For example, if the SNR of a lightpath with a 32-QAM
modulation format is predicted to be above threshold with less
than 70% confidence, an operator may prefer a conservative
approach and employ a 16-QAM modulation format to avoid
a potentially faulty lightpath configuration. Similarly, if the
same SNR estimation is predicted to be above threshold with
80% confidence, an operator may prefer a liberal estimation
approach an decide to deploy the lightpath with a 32-QAM
modulation format. Moreover, compared to previous works,
the uncertainties in the SNR are due to fast time-varying penal-
ties rather than due to unknown effects, e.g., amplifier gain

ripple, or lack of complete knowledge of input parameters,
e.g., span input/output lumped losses. Hence, we estimate an
SNR distribution rather than a point estimate.

In our previous works [13]], [[17], we modelled the SNR
as a random variable and used ML-regression approaches to
estimate the parameters of the distribution. However, such
approaches are not distribution-agnostic as they assume some
prior knowledge about the SNR distribution. In this work,
we utilize recent advances on the calibration of probabilis-
tic regression models that enable us to accurately estimate
uncertainties related to SNR, without requiring any prior
knowledge on the underlying data distribution. Calibrating
a regression model allows to avoid overconfident lightpaths’
SNR estimations that would lead to deploying faulty lightpaths
and allows to maximize network resource utilization, hence
minimizing network cost.

ITIT. CALIBRATED QOT PROBABILISTIC REGRESSION

Figure (1| shows a high-level view of the Machine Learning
pipeline to solve the QoT estimation problem. Given testing
data with its selected features x;, the Probabilistic Regression
model estimates the SNR distribution and the Recalibration al-
lows to accurately predict the SNR distribution (CDF(SNR)).
In general, we would like a probabilistic regression model to
be both calibrated and sharp. Intuitively, calibration measures
how truthful the predicted confidence intervals are, whereas
sharpness measures to how tight (i.e., close to the mean
prediction) the aforementioned confidence intervals are. Fig-
ure [2| shows an illustrative example of i) uncalibrated but
sharp estimation, ii) calibrated but unsharp estimation and iii)
calibrated and sharp estimation. We observe that in case i) the
confidence intervals are all very close to the mean prediction,
but they miss most ground-truth datapoints (e.g., the 100%
confidence intervals do not contain all the datapoints). On the
other hand, when the estimation is calibrated but not sharp
(case ii)), we have truthful but unnecessarily wide confidence
intervals. In the context of QoT estimation, case ii) can be
interpreted as the large system margins adopted in margined
formulas. Finally, in iii) a sharp and calibrated estimation
provides both truthful and tight confidence intervals.

A. Background on Gradient Boosting

QoT regression is a ML problem usually formulated on
tabular data, i.e., data that can be represented as rows (one for
each sample) and columns. Each column represents a lightpath
feature (e.g., modulation format, path length, etc.). Among
many different ML algorithms, at present the best-performing
ones for tabular data are Gradient Boosted Decision Trees
(GBDT) models [18], [19]. Let Dyain = {(xi,v:)}, be our
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Fig. 2. Tllustrative example of calibrated and sharp estimations. Left: uncalibrated but sharp estimation resulting in tight confidence intervals around the mean
value but missing most datapoints. Center: calibrated but unsharp estimation with wide uniform width confidence intervals. The 100% confidence intervals
cover all datapoints. Right: calibrated and sharp estimation. The 100% confidence intervals are tighter around the mean and cover all datapoints.

training dataset for QoT regression, where x; are vectors of
lightpath features and y; are the corresponding ground-truth
SNR values. Gradient Boosting is a function-approximation
algorithm that iteratively updates its estimation f as follows:

fe = fim1+vhe (D

where h; is a base learner, and  is the learning rate. In GBDT
regression algorithms, base learners are regression trees. The
intuition is that a base learner at iteration ¢ is trained to correct
the residual error of the approximation at iteration ¢ — 1. In
particular, at each Gradient Boosting iteration, a base learner
h is fitted on the training dataset with “pseudo-residuals” 7 ;
as targets. Pseudo-residuals are computed as follows:

r = 0L (i)
' Of(xi) i,

where £ can be any differentiable loss function. When £
is the Mean Squared Error (MSE), the pseudo-residual is
proportional to the true residual error. In general, for any
differentiable loss function, each Gradient Boosting update
is equivalent to a gradient descent step in the function space.

2

B. Proposed QoT Regression Framework

To quantify the uncertainty in our predictions we need to
perform probabilistic regression, i.e., our GBDT model must
output a probability distribution. A common assumption in
the literature is to model the output as a Normal distribution
p(yilx;) = N(fi;,62), where means [i; and variances G52 are
predicted by our GBDT model from the input features x;. The
model performs Maximum Likelihood Estimation (MLE) by

minimizing the negative log-likelihood:

A2
clnl 620 = 3 (1owet) + B D)@
g;

However, it may be that the underlying distribution of
the SNR is not Normal. In fact, we may not have any
prior knowledge about the underlying SNR distribution at all.
Because of that, this model alone may fail to accurately model
the ground-truth SNR distribution.

To address this issue, we leverage recent advances on the
calibration of probabilistic regression models. Calibration of a

regression model allows to obtain accurate confidence interval
estimates without specific assumptions on the underlying data
distribution. In particular, we refer to the procedure developed
in [15]], which aims at improving the uncertainty estimates of
Bayesian Neural Networks parameterizing a Normal distribu-
tion. In this paper, we apply this approach on GBDT models,
which typically outperform neural networks on tabular data
and are faster to train [18]].

Let F(x;) be the SNR’s CDF predicted from lightpath
features x;, and let its inverse F~1(x;) be the predicted
quantile function. We say that a regression model is calibrated
if the following holds:

Sty My < [P () (0))
N N—o0

For example, if our model is properly calibrated, we expect
that approximately 95% of the ground-truth values y; will be
lower than their predicted 95-th quantiles [F~!(x;)](0.95).

Assume that our model outputs [F(x;)](y;) = 0.95, i.e.,
it assigns the ground-truth value y; to the 95-th quantile of
the predicted SNR distribution given lightpath features x;.
Moreover, assume that in our dataset only 80% of all ground-
truth values y; fall below their respective predicted 95-th
quantiles, i.e., the inequality [F'(x;)](y;) < 0.95 holds for only
80% of the points in our dataset. This means that our model is
uncalibrated (and overconfident) for 95-th quantile predictions.
Because of this, to satisfy Eq. (@) we need to recalibrate 95-th
quantile predictions to the 80-th.

Following this line of reasoning, we can learn a recalibration
function by training a simple univariate regression model R
on a recalibration dataset constructed as follows:

p Vpel0,1] &)

Deat = {[F(xz)](yl), P([F(Xz)](yz))} (5)
P(p) = [v: | [F(Xi)](yqz);p,i =1,...,N|

Where P(p) is the fraction of ground-truth values y; that
fall below their predicted p-th quantile. To avoid overfitting,
the recalibration dataset can be constructed using data not seen
during the training of the probabilistic regression model.

As suggested in [15], we use Isotonic Regression to learn
the recalibration function from the recalibration dataset D.,.



Algorithm 1 Calibrated QoT Probabilistic Regression

Require: Training dataset Dyain = {(X:, ¥i) ey
1: Fit a GBDT probabilistic regression model F' on the training
dataset Diin minimizing the negative log-likelihood:

)2
£l 6, = 3 [og(o) + L]

2: Build a recalibration dataset Dy :

Daa = { [F(x)] (), PP () (9:) }

pp) = 1Y [F(Xi)](yi)]%pyi =1,...,N|

(Optional): use {(x;,v;)}%; not in Dyain
3: Fit a recalibrator R on D, with Isotonic Regression
4: return GBDT model F, recalibrator R

Isotonic Regression fits on a dataset {z;,v;}Y, a univariate
non-decreasing function ¢; = f(x;) by solving the following
Quadratic Programming (QP) optimization problem:

N
min Z(yl — g2)2 s.t. gz S Qj VZ,] N s S .’Ej (6)
i=1

This is because the recalibration function to be learned is
non-decreasing, and using Isotonic Regression ensures that this
monotonicity constraint is satisfied.

After training a GBDT probabilistic regression model F
and the corresponding recalibrator R, the predicted SNR’s
CDF given lightpath features x; is given by (Ro F)(x;) =
R(F(x;)). The full training pipeline for calibrated QoT prob-
abilistic regression is illustrated in Algorithm [T}

Time complexity. Let n be the number of training samples.
Isotonic Regression is O(n) for already sorted data [[16]. The
worst-case complexity of GBDT is implementation-dependent,
as it hinges on how trees are built at each GBDT iteration.
In our results, we refer to the CatBoost GBDT implemen-
tation [21]. The per-iteration CatBoost complexity is O(n)
times algorithm-specific constants. A detailed analysis of the
CatBoost algorithm is beyond the scope of this paper, but it
can be found in Appendix C of [21].

IV. SYNTHETIC DATA GENERATION

A frequent challenge for research on applying ML in optical
networks is the lack of field data, due to confidentiality
requirements imposed by operators and vendors. Even when
such data are available, operators might not have sufficient
data representing QoT-unfeasible lightpaths to train an ML
model. As a result, the generation of synthetic data is often
the go-to solution to demonstrate the effectiveness of newly
proposed QoT estimation approaches. We utilize the E-tool
transmission simulation tool [6]], that assumes frequency slice
units (FSU) of 12.5 GHz, a total 4 THz link capacity and
transceivers operating at 28 GBaud with a 37.5 GHz channel
bandwidth. We assume dispersion uncompensated transmis-
sion over standard single model fiber (SSMF) with a 0.2
dB/km attenuation coefficient and signal power restoration
thanks to amplifiers spaced every 100km. We assume an
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Fig. 3. Average calibration plot for an Ideal estimator, Uncalibrated Re-
gression (UR) and Calibrated Regression (UR). Point below the Ideal line
correspond to underconfident predictions, and viceversa.

additional per-link random penalty parameter according to
an exponential distribution with a 1 dB average. This added
penalty accounts for the unpredictability of fast time-varying
impairments (e.g., polarization effects [20]), and it is chosen
to have an exponential distribution according to the principle
of maximum entropy. Moreover, adding a per-link stochastic
penalty allows to account for the number of nodes along the
path and differentiate between lightpaths with similar path
lengths but that cross a different number of nodes.

For the training dataset, N lightpaths are randomly selected
(e.g., N=300) by randomly choosing a bitrate in [50, 500]
Gbps range with 50 Gbps granularity and one of the r - M
possible combinations (r=3 routes - M = 6 modulation
formats, i.e., (DP)-BPSK, DP-QPSK and DP-n-QAM, with
n = 8§, 16, 32, 64). For each lightpath, the SNR calculation
is repeated £ = 10 times under different random penalty
samples. To prevent overfitting, 10% of the training dataset
is held-out as validation, and the model yielding the best loss
on the validation set is retained. We did not use a separate
dataset for recalibration, as we did not observe overfitting on
the training dataset. For testing, we generated a larger dataset
of 1800 lightpaths with £ = 100 SNR samples each. While it
is impractical to obtain such data in a real scenario, we use it
at test time only to validate the performance of our proposed
approach on data that is representative of the whole network
and of the true SNR distribution. We chose 6-dimensional
lightpath feature vectors x; with the following information:
modulation format, bitrate, shortest and longest link lengths
in the path, total path length, number of hops in the path.

V. ILLUSTRATIVE NUMERICAL RESULTS

For all our experiments, we consider the 14-node Japan
national topology [13] and report averaged results over 10
randomly generated training datasets. For the implementa-
tion of Algorithm we used CatBoost [21]] with default
hyperparameters optimizing the “RMSEWithUncertainty” loss
function, and Scikit-learn IsotonicRegression [22].

Figure [3| shows the calibration plots for Uncalibrated Re-
gression (UR), which assumes a Normal distribution for the



TABLE I
AVERAGE RMSE VALUES FOR CALIBRATED REGRESSION (CR), UNCALIBRATED REGRESSION (UR) AND QUANTILE REGRESSION (QR)

Algorithm / Quantile Q10 Q20 Q30 Q40 Q50 Q60 Q70 Q80 Q90

CR 143 118 1.05 098 091 086 0.81 0.78 0.78

UR 143 126 124 124 1.9 108 093 079 093

QR 1.54 120 1.06 098 094 086 0.82 080 0.82

—— Uncalibrated (UR) VI CONCLUSION
0-141 Calibrated (CR) We proposed a ML-based probabilistic regression approach
0.12 Emplrica] for estimating the SNR distribution and we explored a new
0.104 calibration procedure to refine the model’s predictions. The
proposed Calibrated Regression allows to truthfully predict
5 0.08 the SNR distribution without any prior knowledge on the
0.06 - underlying data distribution. We showed that a Calibrated
0.04 ] Regression almost perfectly matches the performance of an
Ideal estimator and provides better confidence interval es-
0.021 ‘/ timates compared to an Uncalibrated Regression. Finally,
0.00 T " . . . : ! we quantified the performance of Calibrated Regression in
o 0 SNRS[dB] 10 o 20 terms of RMSE with respect to ground-truth quantiles, and

Fig. 4. Example of empirical SNR PDF (ground truth) and predicted SNR
PDFs by Uncalibrated Regression (UR) and Calibrated Regression (CR).
SNR, and Calibrated Regression (CR), which results from
the application of the learned recalibration function to UR.
A perfectly calibrated model (Ideal) predicts exactly the ex-
pected empirical confidence and is represented as the diagonal
in the calibration plot. Points below and above the Ideal
line represent underconfident and overconfident predictions,
respectively. We note that UR overestimates for the quan-
tiles approximately above the 80-th and below the 12-th,
and underestimates otherwise. After recalibration, CR almost-
perfectly matches the Ideal calibration performance, being
at worst slightly underconfident for the highest quantiles.
In terms of the Mean Absolute Calibration Error, i.e., how
much uncalibrated (either overconfident or underconfident) the
model is with respect to the Ideal performance, UR shows
on average a 5% error while CR shows on average a 1.7%
error. To visually illustrate the results discussed above, we
show the predicted SNR distributions of CR and UR together
with the empirical ground-truth in Fig. 4] for an exemplificative
lightpath. While UR models the output as a Normal and
is therefore unable to capture the asymmetries in the SNR
distribution, after recalibration CR provides a much more
truthful match to the ground-truth.

Finally, we evaluate the performance in terms of RMSE
with respect to nine equally-spaced empirical quantiles. As
a baseline, we consider CatBoost Quantile Regression (QR),
which estimates separately a fixed number of quantiles. Note
that single-output quantile regression requires training one
model per quantile, while our approach can estimate simul-
taneously all quantiles. Table shows the RMSE values for
each quantile for CR, UR and QR. Overall, CR is the best
performing approach, outperforming on average both UR and
OR. In particular, RMSE for CR is up to 0.28 lower compared
to UR and up to 0.11 lower compared to QR. This shows that
CR is both calibrated and sharp, as quantile estimates are close
to their corresponding ground-truth values.

showed that it outperforms both an Uncalibrated Regression
and single-output quantile regression.

REFERENCES

[1] J. Shao et al., “Comparison of Split-Step Fourier Schemes for Simulating Fiber
Optic Communication Systems,” in IEEE Photonics Journal, 6 (4), pp. 1-15, 2014.

[2] P. Poggiolini et al., “The GN-Model of Fiber Non-Linear Propagation and its
Applications,” in Journal of Lightwave Technology, 32 (4), pp. 694-721, 2014.

[3] F. Musumeci et al., “An Overview on Application of Machine Learning Techniques
in Optical Networks,” in IEEE Communications Surveys and Tutorials, 21 (2), pp.
1383-1408, 2019

[4] M. Ibrahimi, C. Rottondi and M. Tornatore, “Machine Learning methods for
Quality-of-Transmission estimation”, In Machine Learning for Future Fiber-Optic
Communication Systems (pp. 189-224).

[5] Y. Pointurier, “Machine learning techniques for quality of transmission estimation
in optical networks,” in Journal of Optical Communications and Networking, 13
(4), pp. B60-B71, 2021.

[6] C. Rottondi et al., “Machine-learning method for quality of transmission prediction

of unestablished lightpaths,” IEEE/OSA Journal of Optical Communications and

Networking, 10 (2), pp. A286-A297, 2018

T. Jimenez et al., “A Cognitive Quality of Transmission Estimator for Core Optical

Networks,” IEEE Journal of Lightwave Technology, 31 (6), pp. 942-951, 2013

[8] R. M. Morais et al., “Machine learning models for estimating quality of transmis-
sion in DWDM networks,” IEEE/OSA Journal of Optical Communications and
Networking, 10 (10), pp. D84-D99, 2018

[9] A.Mahajan et al., “Modeling EDFA Gain Ripple and Filter Penalties With Machine

Learning for Accurate QoT Estimation,” IEEE Journal of Lightwave Technology,

38 (9), pp. 2616-2629, 2020

I. Sartzetakis et al., “Accurate quality of transmission estimation with machine

learning,” IEEE/OSA Journal of Optical Communications and Networking, 11 (3),

pp. 140-150, 2019

N. Morette et al., “On the Robustness of a ML-based Method for QoT Tool

Parameter Refinement in Partially Loaded Networks,” in OFC, pp. 1-3, 2022

E. Seve et al., “Associating machine-learning and analytical models for quality of

transmission estimation: combining the best of both worlds,” IEEE/OSA Journal

of Optical Communications and Networking, 13 (6), pp. C21-C30, 2021

M. Ibrahimi et al., “Machine learning regression for QoT estimation of unestab-

lished lightpaths,” IEEE/OSA Journal of Optical Communications and Networking,

13 (4), pp. B92-B101, 2021

L.A. Grieco et al., “Ad-Hoc, Mobile, and Wireless Networks: 19th International

Conference on Ad-Hoc Networks and Wireless,” ADHOC-NOW 2020, Bari, Italy,

October 19-21, 2020, Proceedings. Vol. 12338. Springer Nature, 2020.

V. Kuleshov et al., ”Accurate Uncertainties for Deep Learning Using Calibrated

Regression,” Proceedings of the International Conference on Machine Learning

(ICML), 2018

M.J. Best, and N. Chakravarti, "Active set algorithms for isotonic regression; A

unifying framework,” Mathematical Programming 47, 425-439, 1990

M. Ibrahimi et al., “Machine Learning Regression vs. Classification for QoT

Estimation of Unestablished Lightpaths,” in OSA Advanced Photonics Congress

(AP), paper NeM3B.1, 2020

R. Shwartz-Ziv et al., “Tabular data: deep learning is not all you need,” 8th ICML

Workshop on Automated Machine Learning (AutoML), 2021

J. H. Friedman, ”Greedy function approximation: A gradient boosting machine,”

The Annals of Statistics, 29 (5), pp. 1189-1232, 2001

Y. Pointurier, “Design of low-margin optical networks,” in Journal of Optical

Communications and Networking, 9 (1), pp. A9-A17, 2017.

L. Prokhorenkova et al., ’CatBoost: Unbiased boosting with categorical features,”

Proceedings of the 32nd International Conference on Neural Information Process-

ing Systems (NeurIPS), 2018

F. Pedregosa et al., ’Scikit-learn: Machine Learning in Python,” Journal of Machine

Learning Research, vol. 12, pp. 2825-2830, 2011

[7

[10]

[11]
[12]

[13]

[14]

[15]

[16]
[17]

[18]
[19]
[20]
[21]

[22]



	Introduction
	Related Work
	Calibrated QoT Probabilistic Regression
	Background on Gradient Boosting
	Proposed QoT Regression Framework

	Synthetic data generation
	Illustrative numerical results
	Conclusion
	References

