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Abstract

Artificial Intelligence (AI) has demonstrated superhuman capabilities in solving a significant number of tasks, leading to
widespread industrial adoption. For in-field network-management application, AI-based solutions, however, have often
risen skepticism among practitioners as their internal reasoning is not exposed and their decisions cannot be easily
explained, preventing humans from trusting and even understanding them. To address this shortcoming, a new area in
AI, called Explainable AI (XAI), is attracting the attention of both academic and industrial researchers. XAI is concerned
with explaining and interpreting the internal reasoning and the outcome of AI-based models to achieve more trustable
and practical deployment. In this work, we investigate the application of XAI for network management, focusing on
the problem of automated failure-cause identification in microwave networks. We first introduce the concept of XAI,
highlighting its advantages in the context of network management, and we discuss in detail the concept behind Shapley
Additive Explanations (SHAP), the XAI framework considered in our analysis. Then, we propose a framework for a
XAI-assisted ML-based automated failure-cause identification in microwave networks, spanning model’s development
and deployment phases. For the development phase, we show how to exploit SHAP for feature selection and how to
leverage SHAP to inspect misclassified instances during model’s development process, and how to describe model’s global
behavior based on SHAP’s global explanations. For the deployment phase, we propose a framework based on predictions
uncertainty to detect possibly wrong predictions that will be inspected through XAI.
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1. Introduction

With the increasing availability of monitoring data and
the recent advances in computing platforms, Artificial In-
telligence (AI) and Machine Learning (ML) are becoming
key tools for network operators to automate network man-
agement. AI-based solutions have already demonstrated
superhuman capabilities in solving a wide range of real-
world networking problems, and addressing, among others,
challenging failure management problems as failure detec-
tion, failure-cause identification, failure prediction and lo-
calization, leading to widespread industrial adoption. How-
ever, AI-based solutions have often risen skepticism among
practitioners as they are mostly used as “black boxes”. As
a matter of fact, their internal reasoning is not exposed,
thus preventing humans from trusting and even under-
standing them.

To address this shortcoming, efforts are being made
in the field of eXplainable Artificial Intelligence (XAI) to
explain decisions of a ML model with the aim of transform-
ing the black box into a “transparent” box [1], [2], [3], [4],

[5]. XAI is concerned with explaining the motivations be-
hind AI-based models in automated decision making. By
explaining AI-based models, practitioners can understand
how the AI arrived to the decision, i.e., what are the rea-
sons behind AI decisions, and hence, know whether deci-
sions are based on correct or wrong reasoning, which can
provide crucial insights into how a model may be improved.
For instance, XAI can shed light on how model features
are used as driving factors towards decisions, thus relating
input features to model’s output, and allowing humans to
have an improved understanding of a model’s behavior.

Hence, XAI is key to increase trust in automated net-
work management. It can be exploited either prior to the
deployment of the ML model, i.e., while designing the ML
model (development phase) or after the deployment of the
ML model (deployment phase).

• In development phase, XAI can be used to explain a
model’s global behavior (how features, based on their
values and interaction with other features, impact
model’s decisions) or at group level, e.g., focusing on
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model behavior with respect to a particular label in
a classification problem. Leveraging these explana-
tions, domain experts can debug model’s reasoning
and either verify or negate model’s behavior, or, in
other words, can answer the question, are model’s
decisions in the classification problem based on cor-
rect reasoning?

• In deployment phase, XAI can be used to explain,
in real-time, specific decisions, relating to a specific
instance, taken by the AI model.

In this work, we focus on the application of XAI for
automated failure-cause identification in microwave net-
works. We model the problem as a supervised multi-class
classification [6] and we encompasses the application of
XAI in both development phase and deployment phase.
As a specific XAI framework, we selected Shapley Addi-
tive Explanations [7] (SHAP will be discussed in detail in
Sec. 3). For the development phase, we first show that
SHAP can be leveraged to perform feature selection, con-
sequently reducing number of features (and hence limit-
ing computational time). Then, we apply SHAP to ex-
tract explanations and explain model’s behavior. We show
how these explanations help in debugging model’s behav-
ior and in extracting insights about the problem at hand.
For the deployment phase, we use SHAP to explain in-
dividual decisions (these explanations are referred to as
local explanations), which can be exploited by a network
operator to inspect decisions in real time, before initiat-
ing actions based on such decisions. Let us consider, for
instance, the case of automated failure-cause identifica-
tion. Based on ML model decision, network operators can
timely take the most appropriate countermeasure to repair
a failure, thus reducing service unavailability compared to
time-consuming analysis of failure logs performed by hu-
man domain experts. However, initiating a repair action
based on a wrong failure-cause identification can lead to
significant and unnecessary costs for the operator. In such
a scenario, XAI can help reveal to the network operator
the driving forces behind a decision, an information that
can be used to asses whether to trust a model’s decision
or not, and hence, whether to initiate recovery procedures
based on that decision.

Considering such capabilities provided by XAI, one
could be tempted to extensively use XAI to explain several
(if not all) decisions of the deployed ML models. However,
this would contradict the objective of automated decision-
making, as explaining decisions requires a domain expert
that interprets and validates the explanations. Motivated
by this, we propose a novel framework based on model’s
uncertainty calculations to filter out possible misclassifi-
cations and propose a numerical and systematic approach
to highlight decisions where a deeper inspection based on
XAI framework might be beneficial.

We summarize the contribution of this paper as follows:

• We introduce the concept of XAI, highlighting its
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Figure 1: Overview of classes of frameworks and explanations.

benefits in the context of network management.

• We discuss the application of SHAP, a XAI frame-
work, in a ML model’s development process and dur-
ing model’s deployment.

• We show how to perform a SHAP-assisted feature
selection. Results show that feature selection based
on SHAP eliminated more than 60% of the features
while improving model’s performance.

• We show how to leverage SHAP to inspect misclas-
sified instances during model’s development process,
and how to describe model’s global behavior based
on SHAP’s global explanations.

• For the deployment phase, we propose a framework
based on predictions uncertainty to detect possibly
wrong predictions that will be inspected through XAI.
Results show that using uncertainty thresholds al-
lows to selectively investigate with XAI only a small
fraction of predictions, providing precious insight on
how to continuously improve the model’s performance.

The rest of the paper is organized as follows. Section
2 provides an overview on XAI, highlighting the benefits
of XAI for communication networks, and discusses related
work. Section 3 provides an overview of SHAP, the XAI
framework adopted in this work. Section 4 describes the
problem of failure-cause identification in microwave net-
works. Section 5 discusses numerical results of automated
failure-cause identification, while Sec. 6 discusses our ap-
plication of XAI and presents numerical results. Finally,
Sec. 7 concludes the paper.

2. Background on Explainable Artificial Intelligence

This section provides an overview on XAI and then dis-
cusses related work on the application of XAI for network
management.

2.1. Overview on XAI

Explainability vs. Interpretability. Explainability
and interpretability are two popular terms in the context
of XAI. Interpretability of an AI model has been defined
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qualitatively as the degree to which a human can under-
stand the cause of a decision of that model [8], [9], [10].
Interpretability is inherently based on the model, as some
models, such as rule-based models, are interpretable by-
design and can be easily understood, while other models,
such as artificial neural networks, cannot be interpreted.

In contrast, explainability is associated with revealing
the internal logic of the model with the aim of justifying a
particular decision. The need for explainability in AI orig-
inates from the fact that ML models, in their majority,
are complex, and their internal reasoning cannot be ex-
plained [11] [4]. XAI aims to demonstrate how ML models
reason, showing how a model arrived to its decision, or,
in other words, which features are the driving forces to-
wards a decision. Note that some XAI frameworks use
interpretable ML models that provide information of their
decision process by design, which can then be transformed
into explanations.

Why Explain?: This question is strictly related to
the stakeholders and the use case in which the ML model
and XAI framework are applied. For instance, in engi-
neering, XAI is mostly exploited to improve performance
and enhance understanding and trust. For policy-makers
and legal auditors, instead, explanations are required to
ensure a model meets compliance and regulations. For au-
tomated network management, XAI helps understanding
which features are contributing to decisions and by how
much a feature is influencing a particular decision, which
allows practitioners to verify if the model’s reasoning is
correct, and to debug the model if explanations reveal that
model’s reasoning is not correct. Moreover, in some tasks,
ML models learn relationships between input and output
that domain experts are unaware about. In such cases, ex-
planations uncover insights that help reserve-teach domain
experts about the problem at hand.

How to explain a model? Models’ decisions can be
explained in-model or post-model (also referred to as post-
hoc). In-model explainability refers to using a model that
is intrinsically interpretable, in contrast to using complex
ML models (black boxes) that lack interpretability. Post-
hoc explanainability refers to explaining a complex ML
models after the model has taken its decision (i.e., in a
post-hoc manner). In our work, we are interested in ex-
plaining pre-trained models with the aim of understanding
their reasoning, and this process is performed by using XAI
frameworks in a post-hoc manner (see Figure 2).

Classes of XAI Frameworks. XAI frameworks can
be either model-specific or model-agnostic. The applica-

tion of model-specific frameworks is restricted to specific
ML models, and relies on interpreting parameters of a spe-
cific model. Model-agnostic, on the contrary, can be ap-
plied to any ML model as they do not consider any com-
ponents of the original ML model, which is an advantage
with respect to model-specific methods.

Classes of Explanations. Explanations are divided
into two classes, global and local. A global explanation
explains the whole model’s behavior, while a local expla-
nation provides explanation to a specific observation (to a
specific decision taken by a model for one particular data
point). Depending on the aim, both types of explanations
can be necessary to explain the behavior of a model.

Evaluating Explanations. The evaluation of expla-
nations of XAI frameworks is a topic that is attracting a lot
of attention. Currently, the correctness of an explanation
is judged by human intervention, i.e., a human (domain
expert) has to examine an explanation and to either vali-
date or nullify its correctness, as in [12, 13]. Some recent
works have started to appear where metrics and frame-
works to evaluate the quality of explanations are proposed
[14, 15, 16, 17, 18], however there is yet no standard ap-
proach for quantifying correctness of explanations. In our
application of XAI, we rely on domain experts to judge
explanations.

2.2. Related Work

Recent works highlight the challenges and opportuni-
ties of XAI either in a broad sense, such as Refs. [2], [3],
[4] and [5], or with focus on communication networks as
Refs. [19], [20] and [21]. In particular, Ref. [19] discusses
in detail the need for explainability to improve trust be-
tween humans and AI for 6G networks, while Ref. [20]
focuses on the need and requirements of explainable and
traceable AI for achieving zero-touch networks.

Other works focused on the application of XAI in net-
work management [22]-[23]. Ref. [22] proposed an XAI-
based approach for resource reservation in sliced networks,
to explain real-time reservation decisions and to diagnose
potential faults during model’s development. Ref. [24] ap-
plies XAI in the unsurpervised learning domain to traffic
prediction to explain decisions taken by a YouTube video-
quality classifier working under encrypted traffic. Ref. [25]
proposes a XAI-based framework for the problem of net-
work function virtualization. The application of XAI is
also attracting researchers in optical networks [26, 27, 23].
In Ref. [26], authors exploit XAI to explain ML models for
estimating quality-of-transmission of lightpaths in optical
networks to gain insights about the problem, while Ref.
[27] explains ML models for the problem of fault localiza-
tion uncovering insights about the reasoning of the ML
model. In Ref. [23], authors apply XAI to explain global
behavior of a ML model for root-cause identification.

3



3. SHAP: SHapley Additive Explanations

3.1. Approximation Models

Simple ML models, such as linear regression, have an
easy to understand interpretation. Complex models, such
as ensemble or deep learning models, on the contrary, are
not easy to understand and, hence, we cannot use these
models as explanations. Instead, simpler and interpretable-
by-design models can be used to approximate the behavior
of the original complex model, providing an interpretable
approximation of the original complex model. These mod-
els are referred to as interpretable approximation mod-
els, i.e., models that imitate the behavior of other un-
interpretable ML models such as, e.g., ensemble and deep
learning models, while providing a description of its own
behavior, consequently explaining the behavior of the com-
plex model. For instance, to interpret an ensemble-based
model, a logistic regression model can be used as an ap-
proximation model to explain decisions boundaries and
provide a description of model’s behavior. Note that the
decision boundary of the approximation model will only
coincide with that of the original complex model in a local
space, specifically in the proximity of the instance whose
prediction is explained, and not globally. A well-known
XAI framework that is based on approximation models is
Local Interpretable Model-Agnostic Explanations (LIME)
[28].

A LIME explanation is generated as follows (see Fig.
3). Select an instance x (black point in the figure) of the
dataset X with its label to be explained. Perturb dataset
X (i.e., change features’ values of data points in X) to
generate a new data set Z of a larger size with respect to
original dataset X. Perturbation of original data is per-
formed to generate new observations similar to original
ones to be additionally considered when generating expla-
nations, with the aim of better describing the behavior
of the original black box model. Then, using the original
black box model, predict target values for all instances in
Z and weight elements in Z with respect to the proximity
(also referred to as neighborhood) to instance x (heat-map
like red circle in the figure). Note that the neighborhood
is determined by giving data points weights according to
their proximity to the instance to be explained. Train an
interpretable approximation model g on Z and respective
predictions. Finally, interpret a decision of the explain-
able approximation model g, and return an explanation
(contributions of all features towards the prediction) for
instance x.

3.2. SHAP

SHAP is a game-theory-based model-agnostic frame-
work to explain the output of ML models by estimating
each feature’s contribution and influence on the model [7].
SHAP builds on the concept of Shapley value (designed
by Lloyd Shapley) to assign fair payouts to players based

Feature 1

F
e
a
tu

re
 2

Class 1

Class 2

Feature 1

F
e

a
tu

re
 2

Approximation

model, g

Figure 3: Graphical representation of LIME algorithm.

on their contribution to the total payout in a game. As-
suming players cooperate in a coalition and receive a cer-
tain profit from this cooperation, the Shapley (or SHAP)
value is computed as the average marginal contribution of
a player across all coalitions of the players. In the con-
text of explainability, the SHAP framework calculates the
SHAP value (i.e., the marginal contribution or importance
value) of each input feature of a prediction instance by iter-
ating through all permutations of the input features, where
a feature can be seen as a player in a game and the pre-
diction is the payout to be distributed. More specifically,
SHAP approximates the individual contribution of each
feature for each data point by estimating the model out-
put without using it versus model outputs that do include
it.

ϕi(f, x) =
∑
z′⊆x′

|z′|!(M − |z′| − 1)!

M !
[fx(z

′)− fx(z
′/i)] (1)

Eqn. 1 shows how to calculate the SHAP value ϕi(f, x)
for a feature i and for a given data point x and a ML
model f . The summation considers two terms over all
possible coalitions of the set of features of the data point x.

The first terms, |z′|!(M−|z′|−1)!
M ! , represents a weight given

to each coalition, where |z′| is the cardinality of the set
of features in z′ and M is the total number of features.
This weight is high for small and large coalitions while
it is low for medium-sized coalitions. The second term,
[fx(z

′) − fx(z
′/i)], is the contribution (or importance) of

feature i, which is the difference between fx(z
′), the output

of the model for data point x of the coalition with feature
i, and fx(z

′/i), the output of the model without feature
i. Note that same values of a feature in different data
points can contribute differently to the output, depending
on values of other features for each of the data points.

By approximating the SHAP value of each feature and
for each data point, we can observe model’s behavior for
individual predictions (local explanations) and by aggre-
gating all local explanations, we can observe global model’s
behavior (global predictions).

4. Use Case: Failure Identification in Microwave
Networks

This section describes, as use case for the application
of XAI, the problem of how to automate failure identifi-
cation in microwave networks using machine learning. We
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Table 1: Distribution of data points over failure classes.

Failure Cause # of 45-minutes windows

C0 - Deep Fading 284
C1 - Extra Attenuation 581
C2 - Interference 49
C3 - Low Margin 190
C4 - Self-Interference 187
C5 - Hardware Failure 1222

first describe a microwave link and then detail the vari-
ous failure root-causes in microwave networks, discussing
the typical countermeasures adopted to contrast them. Fi-
nally, we present the data used in our analysis.

4.1. Microwave Link

A microwave link can function (transmit and receive)
in a bidirectional manner, from site A to site B and from
site B to site A, given that transmitting and receiving
equipment are present at both sites. The link consists
of three main elements, i.e., 1) the microwave radio, 2)
the transmission line and 3) the antenna. The microwave
radio can be placed at different locations, i.e., either in-
side a building (full-indoor), in proximity of the antenna
(full-outdoor), or by adopting a hybrid solution, where the
electronic devices are distributed between an outdoor unit
(ODU) and indoor unit (IDU). At the transmitter side,
the microwave radio is responsible of generating the ana-
logue signal, while, at the receiver side, it demodulates the
signal. The transmission line (typically a coaxial cable)
connects the microwave radio to the antenna. The an-
tenna is usually parabolic-shaped and is characterized by
its gain, size and directivity function, i.e., the capability
of concentrating the transmitted/received power to/from
specific directions.

The performance of a microwave link is monitored by
evaluating the number of severely errored seconds (SES),
where a SES is a one-second period with at least 30% er-
rored blocks, where an errored block is a group of consecu-
tive bits in which at least one is errored. A microwave link
is then considered unavailable when the number of con-
secutive SES exceeds 10 in at least one of the microwave
link. The unavailability is then measured in terms of Un-
Availability Seconds (UAS), which represent the amount
of time (expressed in seconds) when the number of errors
exceeds a certain threshold. Note that a microwave link
can experience UAS for a period of time and then go back
to normal functioning. This is because the microwave link
can be frequently affected by external factors, such as the
atmosphere, which may affect the functioning of the link
temporarily. We refer the reader to [6] for more details.

4.2. Failure Classes

We consider six macro categories of failure causes for a
microwave link (labeled C0 to C5). Five failure causes are

propagation-related, i.e., they are caused by atmospheric
variables or the existence of temporary barriers, while one
corresponds to hardware failure, which is caused by equip-
ment damaged due to, for example, aging or high temper-
ature. Each of these failures require a distinct counter-
measure to eliminate the fault. For instance, one failure
measure may require a reconfiguration that can be done
remotely while another may require on-site intervention,
which in some cases may be, as previously discussed, very
costly and time consuming. In the following, we briefly
describe each failure type, and highlight the typical coun-
termeasures adopted in each case (we refer the reader to
[6] for a detailed description of the failures causes).

1) Deep Fading consists of a strong increase of channel
attenuation causing a severe drop in signal-to-noise ratio.
Among possible causes we can mention heavy rain, snow
or fog, all atmospheric events leading to multipath and
shadowing effects. Counter-measure: temporary reduction
of link’s modulation format (no on-site intervention).

2) Extra Attenuation occurs when received power is
well below a minimum power threshold and can be caused
by, e.g., path obstruction (due to the presence of per-
manent obstacles), antenna misalignment, mounting is-
sues. Counter-measure: on-site intervention required to
fix problem.

3) Interference occurs when a receiving antenna re-
ceives multiple bit streams due to overlap of other trans-
missions at its frequency, due to unexpected reflections
from other links, causing it to fail to distinguish the bit
stream destined to it. Counter-measure: remote interven-
tion is enough to reconfigure link’s frequency.

4) Low Margin occurs when the link has been mis-
configured due to human error, which causes UAS events
to occur. Counter-measure: remote human intervention is
required to correctly configure link’s parameter.

5) Self-Interference occurs when the link creates local
signal reflections and spurious signals which are propa-
gated to the receiver radio component, due to degrada-
tion of the hardware used to eliminate signal reflections,
causing random UAS on the link. Counter-measure: on-
site human intervention is required to substitute hardware
components and re-configure link parameters.

6) Hardware Failure consists of either temporary or
permanent equipment failure. Counter-measure: on-site
human intervention is required to replace hardware equip-
ment causing the failure.

4.3. Data

Data used in our study consists of 2513 data points
collected from more than 225 thousand point-to-point mi-
crowave links. The 2513 data points were all hand-labeled
by domain experts. Tab. 1 shows the distribution of the
data points among the six failure classes. Each data point
consists of a 45-minutes window observation, obtained as
concatenation of three 15-minutes windows where the last
window suffers from at least one UAS event. As features,
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Table 2: Performance metrics of each of the three models considered in our study.

Model Accuracy Precision Recall F1-Score
F1-score per class

C0 C1 C2 C3 C4 C5

RF 0.93 0.94 0.93 0.93 0.85 0.91 0.88 0.76 0.97 0.97
ANN 0.88 0.84 0.84 0.82 0.69 0.90 0.89 0.73 0.97 0.94
XGB 0.93 0.93 0.93 0.93 0.85 0.92 0.88 0.76 0.98 0.98

we consider 5 features pertaining to link’s design param-
eters and performance metrics, and 30 corresponding to
measurements collected from the microwave link (10 from
each 15-minute window). The set of features considered
corresponds to that used by domain expert to identify fail-
ure causes on a microwave link. A detailed description of
the feature set is reported in Tab. 3, and a detailed de-
scription of the data preprocessing can be found in Ref.
[6].

5. Performance Evaluation

This section discusses numerical evaluations of the su-
pervised ML models for failure-cause identification in mi-
crowave networks to show the reader the performance of
the MLmodels without considering the application of XAI.

The problem of failure-cause identification in microwave
networks is modeled as a supervised multi-class classifica-
tion problem. As input, the supervised ML model takes a
45-minutes window observation on a microwave link, con-
sisting of three 15-minutes windows in which the last win-
dow suffers from at least one UAS event. For a given link
in a given 45-minutes window, a total of 35 features, de-
scribing link’s design parameters and performance metrics,
are used to model data points input. As output, the model
provides a label corresponding to one of the 6 failure causes
discussed previously.

We consider three different ML algorithms, namely, Ar-
tificial Neural Network (ANN), Random Forest (RF) and
Extreme Gradient Boosting (XGB) for failure-cause iden-
tification. In particular, ANN and RF were adopted in our
previous work [6] where details on hyperparameter selec-
tion can be found, and XGB was adopted in [29], where
hyperparameters have been also optimized. In particu-
lar, ANN and RF were adopted in our previous work [6],
where details on hyperparameter selection can be found.
For XGB algorithm we tested different combinations of
hyperparameters and used the classifier with highest clas-
sification accuracy. We vary eta parameter (learning rate)
and subsample between 0.1 and 1 with a step of 0.1, and
vary max depth between 1 and 10 with a step of 1. For
XGB, the hyperparameters selected are eta = 0.3, max
depth = 7 and subsample = 0.9.

The numerical evaluations of the supervised failure-
cause identification can be found in table 2, where we show,
for the three adopted ML models, Accuracy, the weighted
averages of Precision, Recall and F1-score, and the F1-
score for each of the classes. Results show that, in general,

the three algorithms have a comparable performance with
a slight advantage for XGB. Specifically, XGB has the best
accuracy (93.6%) outperforming RF and ANN that have
93.04% and 88.66%, respectively. In terms of Precision,
Recall and F1-Score, the XGB and RF algorithms show a
similar performance, outperforming the ANN which shows
a performance 10% lower for all metrics. Tab. 2 also com-
pares the performance of the models in terms of F1-Score
for the various failure classes. Results also show that XGB
and RF show similar F1-score values ranging between 76%
(C3 for both models) and up to 98% (for C4 and C5 for
XGB). Overall, numerical results show that performance
of the models, RF and XGB in particular, is fairly accept-
able, with a slight advantage for XGB.

6. XAI-Assisted Automated Failure Identification
in Microwave Networks

In this section, we present our application of SHAP
for both the development phase (subsection 6.1) and the
deployment pahse (subsection 6.2). For the development
phase, we first exploit SHAP for i) feature selection, ii)
local explanations and iii) global explanations. In par-
ticular, we have used TreeSHAP, a model-specific SHAP
framework that finds an exact computation of SHAP val-
ues with a lower complexity with respect to other versions
of SHAP, by exploiting Decision Trees (DTs) structures
to disaggregate the contribution of each input in a DT or
DT-ensemble model [30]. For the deployment phase, we
leverage uncertainty estimation and decomposition to fil-
ter potentially untrustworthy predictions to be explained
via XAI. As ML model, we use XGB, which showed highest
accuracy among the ML models in previous section.

Our proposed SHAP framework is described in Fig.
4. First, feature selection based on SHAP is performed
(Steps 1-4). In Step (1), data is passed to the ML model
and the model is trained and model’s hyperparameters are
optimized. In Step (2), SHAP calculates Shapley values
of features and passes features’ rank to the feature selec-
tion method in Step (3), which performs feature selection
(discussed in detail later) and eliminates features in Step
(4). Upon the termination of the feature selection pro-
cess, the process of debugging model’s misclassifications
using SHAP starts with the data with reduced feature set
(Step 5). In Step (6), the trained ML model classifies data
points, and misclassified instances are passed to SHAP. In
Step (7), misclassified instances are explained using SHAP
and are then inspected by an expert who might detect
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Table 3: Features describing a 45-minute window of the radio link. Feature names with ‘*’ are measurement features with three different
values, one for each 15-minutes slot.

Type Feature Name Description

Link Characteristics f1 LowThr Minimum received power tolerated on the link with any modulation format used (dBm)
f2 Ptx Nominal transmitted power when the minimum modulation format is used (dBm)
f3 Thr min Minimum received power threshold tolerated by the link with its current modulation format (dBm)
f4 RxNominal Nominal received power at the maximum modulation format (dBm)
f5 acmEngine A flag which indicates if the Adaptive Code Modulation (ACM) is enabled on a given microwave link

G.828 metrics f6, f7, f8 ES* Number of one-second periods with at least one ES in the 15-minutes slot
f9, f10, f11 SES* Number of one-second periods with at least one SES in the 15-minutes slot

Power values f12, f13, f14 txMaxA* Maximum power transmitted from site A in in the 15-minutes slot (dBm)
f15, f16, f17 txminA* Minimum power transmitted from site A in the 15-minutes slot (dBm)
f18, f19, f20 rxmaxA* Maximum power received at site A in the 15-minutes slot (dBm)
f21, f22, f23 rxminA* Minimum power received from site A in the 15-minutes slot (dBm)
f24, f25, f26 txMaxB* Maximum power transmitted from site B in the 15-minutes slot (dBm)
f27, f28, f29 txminB* Minimum power transmitted from site B in the 15-minutes slot (dBm)
f30, f31, f32 rxmaxB* Maximum power received at site B in the 15-minutes slot (dBm)
f33, f34, f35 rxminB* Minimum power received from site B in the 15-minutes slot (dBm)
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Figure 4: Overview of our proposed SHAP framework for the development and deployment phases.

mislabeled data points and modify input data accordingly
(Step 8). Modified input data is then passed to model for
retraining (Steps 9 and 10). In Step (11), SHAP is passed
the input data and the model to perform global explana-
tions which are passed to an expert (Step 12) who can
verify the model’s global behavior (Step 13). The model
is then moved for deployment (Step 14). In deployment,
the process of explaining uncertain decisions takes place.
Decisions are passed to a filter based on uncertainty value
in Step (15). Decisions with uncertainty values exceed-
ing a predefined threshold (explained in detail later) are
moved to SHAP (Step 16) and local explanations are ex-
tracted (Step 17) and passed to expert who can contest
model’s decision based on explanations (Step 18) to have
a trusted decision. Decisions whose uncertainty value does
not exceed the threshold are considered trusted (Step 19).

6.1. Development

Feature Selection with SHAP. Feature selection is
the process of optimizing the number of input variables
by eliminating features that are either redundant or un-
necessary without experiencing harmful information loss.
For any machine learning task, feature selection is a key
method to reduce complexity. Additionally, for examining
explanations, a reduced set of features may make mod-

els easier to be understood by practitioners and domain
experts.

In this section, we use ranking-based feature selection
methods. We exploit SHAP to rank features (i.e., we rank
features based on their SHAP value), and then give the
ranking as input to the feature selection method. We
compare the results of the SHAP-based feature selection
process against more traditional feature importance frame-
works based on decision trees for the XGB model we adopt
in this paper.

With respect to the tree-based feature importance pro-
cess, SHAP is expected to yield smaller size of final set of
features and higher classification accuracy. This is based
on the fact that classical features importance (features’ im-
pact on model’s performance) in gradient boosting models
might be, in some cases, misleading and unreliable [31]. In
boosting models, importance of a feature is calculated for
a single decision tree by the amount that each attribute
split point improves the performance measure (the accu-
racy), weighted by the number of observations the node
is responsible for. Specifically, each feature has a Gain,
which is a modification of information gain that reduces
its bias (but don’t solve the issue totally), and refers to
the increase in accuracy carried by the feature to the tree
branch it is on, i.e., the difference in accuracy before and
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Figure 5: Feature Selection Classification Results.

after adding a new split on a feature X to the branch. This
Gain denotes the related feature’s relative contribution to
the model, which is derived by considering each feature’s
contribution for each tree in the model.

As feature selection methods, we consider two meth-
ods: Recursive Feature Elimination (RFE) and Recursive
Feature Addition (RFA). In RFE, at each stage of the
search, the least important features are iteratively elimi-
nated. Conversely, in RFA, the algorithm eliminates the
highest-ranked feature and at the end of the process, it
returns the reverse ranking [32]. In our simulations, we
considered the addition/elimination of 1 feature at each
iteration. In both approaches, the algorithm stops when
the feature set is empty.

The feature selection process with SHAP is as follows
(depicted in left part of Fig. 4). Starting with the initial
set of features, a model is trained and the SHAP values
are computed resulting in a feature rank. Then, a feature
is eliminated or added (based on RFE or RFA) to produce
a new feature set. A new model is then trained (with
tuning of hyperparameters) with the new set of features.
The process repeats until reaching the stopping condition.
Finally, the resulting set of features is that whose model
yielded best performance in terms of accuracy.

In terms of resulting set of features, RFE based on
SHAP reduced the set of features to 11 while that based
on tree-based feature importance resulted in a set of 17
features. RFA based on SHAP resulted in a set of 25
features while that based on tree-based feature importance
resulted in a set of 31 features.

Figure 5 reports results comparing the performance of
the models considering the resulting set of features in each
of the cases. Results show that feature selection based
on SHAP, either with RFA or RFE, has highest accu-
racy of around 94.1% (1% improvement with respect to
that without feature selection and slightly better than that
of feature selection based tree-based feature importance).
In terms of precision, recall and F1-score, RFE based on
SHAP shows highest performance with an improvement
of around 0.5% from the case without feature selection.
As for RFA with SHAP, it outperforms tree-based fea-
ture importance and a comparable performance to the case

without feature selection. These findings demonstrate that
SHAP can be exploited, and is in fact highly efficient, when
combined with feature selection approaches, as it reduced
the set of features to 11 (starting with 35) while showing
an increase in performance measures.

Explaining Individual Decisions (Local Expla-
nations)

A local explanation provides explanations to a specific
decision taken by the model (referring to one particular
data point). In the development phase, local explanations
can be used to debug model reasoning, whether for cor-
rect or wrong decisions. In other words, such explanations
allow to debug the way the model arrived to the deci-
sion. For instance, when the model misclassifies a data
point, model’s decision can be explained with the aim of
inferring its reasoning and hence, the reasons behind the
misclassification. A correct reasoning hints to a possible
mis-labelling of the data point whose decision being ex-
plained. On the contrary, a wrong reasoning indicates that
the model has learned a wrong relationship between fea-
tures and a particular class. Note that this is an iterative
process that involves the domain experts, which validate
the behavior of the model. Such analysis can be lever-
aged by domain experts to gain insights on the problem at
hand, allowing to know when the model might misclassify
one class of failure to another, and therefore derive addi-
tional guidelines that would allow to avoid taking costly
wrong countermeasures in future occurrences.

(a)

(b)

Figure 6: Two examples of SHAP local explanations.
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(a) (b) (c)

(d) (e) (f)

Figure 7: Summary plot of SHAP values for (a) Deep Fading, (b) Extra Attenuation, (c) Interference, (d) Low Margin, (e) Self-Interference
and (f) Hardware Failure.

We show an example of two local explanations with
the aim of clarifying how feature importance in local ex-
planations can be used to debug model’s behavior. We
show in Fig. 6 a SHAP waterfall plots for two data point
classified as class 5. The explanation can be read as fol-
lows. The y-axis is the list of features in descending order
of importance according to SHAP, while the x-axis rep-
resents the SHAP value. Each of the explanations shows
how the model arrived to its decision (i.e., to the classi-
fied class) starting from model’s base value, which is the
expected value of model’s output (=3.2 in our case), by
showing bars for each of the features either pointing to-
wards the decision taken by the model or against it. Fig.
6(a) refers to a correctly classified instance. The explana-
tion shows that most features in the instance pushed the
model’s decision towards the correct label (i.e., all features
have a positive impact towards classifying the instance as
class 5). In Fig. 6(b) we show an explanation of a wrongly
classified instance (classified as class 3 instead of class 5)
where some features have negative impact towards clas-
sifying the instance as class 5. Analyzing which features
pushed model’s decision wrongly, domain experts can iden-
tify reasons why model mis-classified these instances. In
the development and testing phase, such misclassification
can be due to the fact that the instance is mislabeled,
and in that case, the label of an instance can be corrected
by domain experts, or simply due to that fact that it is
an instance that is hard for the model to classify. In the

latter case, the explanation can help domain experts why
the model fails to correctly classify such instances. During
deployment phase, domain experts can leverage on these
explanations to analyze model’s decision before taking any
actions (discussed in detail later in Sec. 6.2).

Explaining Model’s Global Behavior
To explain model’s global behavior, we calculate SHAP

values of all points in our data set and plot SHAP’s sum-
mary plot for each class of failure. A summary plot (shown
in Fig. 7) combines feature importance with feature values
to explain model’s behavior. The y-axis indicates feature
names listed in descending order of their importance. On
the x-axis is the SHAP value. Each point of the summary
plot on a given row (i.e., for a given feature) is a SHAP
value for the feature for a given data point in our data set
(a 45-minutes window for a given link, in our case), posi-
tioned based on its SHAP value. If a point has a positive
SHAP value, it means that it contributes positively to-
wards the prediction of the class being explained, whereas
if the plot has a negative SHAP value, it means that it
contributes negatively against the prediction of the class
being explained. Each point is given a color which qualita-
tively represents the original feature value in a low-to-high
scale. The overlapping points in vertical direction reflect
the distribution of SHAP values for each feature. By ex-
amining summary plots of each class of failure, we under-
stand the relationship between value of a feature (color of
a point) and the impact on the prediction (SHAP value
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of a point) towards a class of failure (decisions being ex-
plained). This knowledge can be leveraged to have a global
understanding of model’s behavior, and, when analyzed
per failure-cause class, allows to extract decisive insights.
While domain experts know, at a global level, that a set
of performance metrics (features) is necessary for failure-
cause identification, discovering which features are linked
to specific failures is important and can result decisive for
implementing AI-driven solutions for predictive mainte-
nance, for instance.

We now show how to use these explanations to under-
stand model’s behavior. Consider Fig. 7(a), which shows
the summary plot of Deep Fading. The explanation fig-
ure shows that rxminAN and rxminBN are the two most
important features for identifying Deep Fading, while ac-
mEngine is the least important one. This piece of infor-
mation extracted from the explanation figure can be either
negated or verified by domain experts. In other words, do-
main experts can answer the question: Is it true that rxmi-
nAN and rxminBN are of out-most importance and that
acmEngine is of least importance when identifying Deep
Fading?. If the answer is always yes, domain experts can
verify that the model bases its reasoning on correct fea-
tures while, if this is not what domain experts expect, it
means that either the model based its reasoning on wrong
features or that it learned new relationships among the fea-
tures that domain experts were unaware about. In either
cases, the summary plot provides additional information
to debug model’s behavior in more details. Consider, for
instance, the row of rxminAN for Deep Fading. When
rxminAN has low values (blue-colored points), it has pos-
itive SHAP values, suggesting that it drives model’s de-
cision towards Deep Fading. Instead, when feature value
is high (red- and purple-colored points), it has negative
SHAP values, meaning it drives model’s decision against
Deep Fading. We can see a similar behavior for rxminBN
while for rxmaxAN-2, for instance, high (or low) feature
values drive decision towards (or against) Deep Fading.
This analysis can be repeated for all features and for all
failure-cause classes with the aim of having a global un-
derstanding of model’s behavior.

Limitations We now discuss the main limitations of
our application of SHAP. As previously stated, the cal-
culation of Shapley values is complex. In our applica-
tion of SHAP, we have considered the use of TreeSHAP
[30], which is a model-specific SHAP framework applica-
ble only to tree-based models and is capable of estimating
the Shapley values efficiently. With other ML models such
as ANNs, the use of SHAP yields a high degree of com-
plexity (high computational amount of time), particularly
when data sets are relatively large.

6.2. Deployment Phase

During deployment phase the trained model acts as a
black-box that, given the input data, outputs a predic-
tion. Even if the model achieved high testing and valida-
tion accuracy, these metrics alone can be a bad proxy for

trustworthiness. This is because a model may output ar-
bitrarily high class probabilities for misclassified and out-
of-distribution samples [28, 33]. To continuously monitor
the model’s trustworthiness at deployment time, we need
to 1) quantitatively assess the model’s uncertainty about
its own predictions, and 2) to provide an explanation for
the samples whose predictions we deem to be untrustwor-
thy. We can adress the two issue above 1) via uncertainty
quantification and decomposition [34], and 2) via local ex-
planations through XAI.

Uncertainty in model predictions can be decomposed
in aleatoric (or data) uncertainty and epistemic (or knowl-
edge) uncertainty [35]. Aleatoric uncertainty is caused
by the inherent randomness in the input data, whereas
epistemic uncertainty is caused by the lack in the model’s
knowledge. The latter may be due to samples either out
of distribution or sparsely covered by the training set.

For gradient boosted classification models, aleatoric
and epistemic uncertainty can be captured by consider-
ing an ensemble of models. The output of each model in
the ensemble is a categorical distribution over the output
classes. Let x be an input sample, y its output, θ be the
model parameters, and D be the training dataset. Then,
the model uncertainty on the output y is defined as [34, 36]:

I(y, θ|x,D)︸ ︷︷ ︸
Epistemic

= H [p(y|x,D)]︸ ︷︷ ︸
Total

−Ep(θ|D)H [p(y|x, θ)]︸ ︷︷ ︸
Aleatoric

(2)

≈ H

[
1

M

M∑
m=1

p(y|x, θ(m))

]
− 1

M

M∑
m=1

H
[
p(y, |x, θ(m))

]
(3)

where I[·] is the mutual information, H[·] is the en-
tropy, and θ(m) are the parameters of the m-th model in
the ensemble. The total uncertainty is computed as the
entropy of the predictive posterior p(y|x,D), which is ap-
proximated by taking the average of the prediction prob-
abilities for each model in the ensemble. The aleatoric
uncertainty is computed as the expected entropy of each
model p(y|x, θ(m)) in the ensemble. The epistemic uncer-
tainty is computed as the difference between total uncer-
tainty and aleatoric uncertainty, and is equal to the mutual
information between the model output y and the model
parameters θ. Note that an estimate of total uncertainty
can be derived from a single model by computing the en-
tropy of its predictive distribution. However, an ensemble
of models is needed for estimating knowledge uncertainty.

Ensembles can be easily generated by training Stochas-
tic Gradient Boosting (SGB) models using different ran-
dom seeds. XGB SGB models can be trained by speci-
fying the subsample hyperparameter present in the XGB
API. The subsample hyperparameter is a value in (0, 1)
that determines the fraction of the training set subsam-
pled at each gradient boosting update. Even though SGB
does not guarantee sampling models from the true poste-
rior p(θ|D), the resulting uncertainty estimates are good
enough in practice [36].
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As outlined in [37], XAI and uncertainty analysis oper-
ate in orthogonal domains. XAI evaluates what drives the
model to a certain decision, whereas uncertainty analysis
evaluates the model’s confidence for a certain prediction.
Linking XAI and uncertainty would then allow to explain
what causes a model to be certain/uncertain about a pre-
diction. In particular, since inspecting the explanations
for each sample at deployment time is not practically fea-
sible, we can leverage uncertainty to selectively apply XAI
to potentially untrustworthy predictions.

Evaluating the distribution of uncertainties in the pre-
dictions can be used to identify potentially-misclassified
samples. Potentially misclassified samples can be then fur-
ther analyzed using XAI to understand which features are
causing confusion in the deployed model. However, a mis-
classified sample may or may not belong to a class inside
the training set. The latter scenario may present itself
in the case of new failure classes appearing due to, e.g.,
network aging. Therefore, we can distinguish between the
following use-cases for uncertainty analysis:

1. Flag potentially misclassified samples.

2. Flag potentially out-of-distribution samples.

These two use-cases are not mutually exclusive. For in-
stance, an input sample might have been misclassified due
to being out-of-distribution. Depending on which use-case
we want to address, we need to leverage the appropriate
measure of uncertainty.

Misclassifications in general are caused both by noise
in the input data and by the model’s lack of knowledge.
Therefore, we expect that misclassified samples can be dis-
criminated by higher values of total uncertainty. Input
samples flagged as misclassified can be then further in-
spected using XAI.

Since out-of-distribution samples are not covered by
the training data, we can expect that the model’s lack of
knowledge will play a greater role in the total prediction
uncertainty. Therefore, we expect that out-of-distribution
samples can be discriminated by higher values of knowl-
edge uncertainty. Again, input samples flagged as out-of-
distribution can be further inspected using XAI.

For both use-cases, the uncertainty estimates will be
used as scores for a binary classifier. In particular, we will
consider the following two binary classification problems:

1. Misclassification detection. Predictions are la-
belled as 1 if correctly classified, 0 otherwise.

2. Out-of-distribution detection. Predictions are
labelled as 1 if the corresponding input is out-of-
distribution data, and 0 otherwise. To simulate out-
of-distribution data appearing at deployment time,
we remove entirely one class from the training set,
but we keep the test set unaltered. This procedure
is performed for every class in the training set and
results are averaged.

We evaluate the performance of the proposed binary
classifiers with AUC-ROC. However, for misclassification
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Figure 8: Prediction-rejection plot of an XGBoost Ensemble for mis-
classification detection in a single 80/20 train-test split, using total
uncertainty as rejection score.

detection the number of misclassified samples is very low
compared to correct classification, therefore AUC-ROC
might result artificially high. Because of this, for mis-
classification detection only we also measure Prediction-
Rejection-Ratio (PRR) [36]. We define predictions flagged
as either misclassified or from o.o.d. data as ”rejected”.
In particular, assume that rejected misclassified test sam-
ples can be corrected after a domain expert inspection.
The prediction-rejection plot shows the improvement of
the overall classification error in the test set as a func-
tion of the percentage of rejected test samples, i.e., the
percentage of test samples that will need to be inspected.
The PRR is computed based on a prediction-rejection plot
as the one shown in Fig. 8. Let Aoracle the area delimited
by the random and the oracle curves, and AXGB the area
delimited by the random and XGBoost Ensemble curves.
The PRR is therefore computed as PRR = AXGB

Aoracle
. As

such, a PRR = 1 indicates performance equal to an oracle
rejector, whereas a PRR = 0 indicates performance equal
to a random rejector. For example, for the train-test split
of Fig. 8, we have PRR = 0.84, and we can reduce our
classification error to less than 2% by rejecting 10% (50
samples) of the test set.

In Table 4 we report PRR and AUC-ROC for misclas-
sification and out-of-distribution detection. We compare
the performance between a single XGB model against an
ensemble of 10 XGB SGB models. Moreover, we compare
the PRR and AUC-ROC obtained by thresholding both
total uncertainty (TU) and knowledge uncertainty (KU).
Note that from a single XGB model we can get an esti-
mate of the total uncertainty by computing the entropy
of the prediction probabilities. Values are computed by
averaging over ten random 80/20 train-test splits for the
considered dataset.

For misclassification detection, the performance met-
rics are fairly good for all the considered cases, with the
XGB ensemble slightly outperforming the single XGBmodel.
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For the XGB ensemble, in contrast to what we initially
conjectured, we observe that knowledge uncertainty dis-
criminates misclassifications better than total uncertainty.
This gives us a precious insight: for this dataset and this
trained model, misclassifications can be reliably imputed
to the model’s lack of knowledge, i.e., to the fact that there
are underrepresented classes in the training set. Therefore,
the performance of our model can indeed be improved by
collecting more data for the least represented classes. Note
that we could not have drawn this conclusion without un-
certainty decomposition.

For out-of-distribution detection the performance met-
rics are again fairly good for all the considered cases, with
knowledge uncertainty from the XGB ensemble having the
best discriminative power, as expected. Therefore, sam-
ples from classes unseen during training can be filtered,
labeled properly by domain experts and inserted in the
training set, continuously improving the multi-class clas-
sification model over time.

Finally, Tab. 5 shows the classification error and re-
jected test samples for misclassification detection while
varying KU uncertainty threshold. Results show that sys-
tem classification error can be reduced by around 50% by
rejecting 6.3% of the test samples.

7. Conclusion

In this work, we investigate the use of eXplainable
Artificial Intelligence (XAI) for automated failure-cause
identification in microwave networks. We first model the
problem of failure-cause identification in operational mi-
crowave networks as a supervised multi-class classification
problem and then propose a framework for the applica-
tion of XAI for the development phase and the deployment
phase. As a XAI framework, we rely on Shapley Additive
Explanations (SHAP). For the development phase, we first
leverage SHAP in the process of feature selection. Results
show that SHAP-assisted feature selection allows reducing
the number of features more than tree-based feature selec-
tion approach, while achieving an improvement in terms of
model’s accuracy. We then show how to exploit SHAP to
describe model’s local and global to enhance trust in the
model prior to its deployment. For the deployment phase,
and since explaining all decisions of models require efforts
from domain experts and might be unnecessary such as in
the case of correct predictions, we propose a framework
based on model’s uncertainty to explain and refer to do-
main expert predictions that are most likely to be wrong.
Results show that with uncertainty thresholding it is pos-
sible to filter potentially misclassified predictions, reduc-
ing the number of samples that a domain expert needs to
visually inspect. On average, we can reduce the system
classification error by more than 50% by rejecting 6.3%
of the test samples. The trade-off between classification
error and samples to be inspected can be freely tuned by
setting the appropriate uncertainty threshold. As a future

work, we plan to leverage the proposed framework for un-
certainty quantification and local explanations to detect
model drift. Additionally, as a possible future research di-
rection, we emphasize on exploring the application of ex-
plainable artificial intelligence techniques in other wireless
communication domains.
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